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Abstract
Impact evaluations can help to inform policy decisions, but they are rooted in particular contexts
and to what extent they generalize is an open question. I exploit a new data set of impact evaluation
results and �nd a large amount of effect heterogeneity. Effect sizes vary systematically with study
characteristics, with government-implemented programs having smaller effect sizes than academic
or NGO-implemented programs, even controlling for sample size. I show that treatment effect
heterogeneity can be appreciably reduced by taking study characteristics into account. (JEL: O21,
O22, C90)

1. Introduction

Recent years have seen extraordinary growth in the use of rigorous impact evaluations
in the social sciences, particularly in international development. This expansion of
evidence is welcome. However, if this evidence is to be useful in informing policy,
we must also know the extent to which results from impact evaluations generalize
to new contexts. Concerns about external validity have stimulated lively theoretical
debates in economics (Deaton 2010; Pritchett and Sandefur 2013). Further, examples
of studies which raised questions about the external validity of initial �ndings have
begun to trickle in (Bold et al. 2018; Allcott 2015). There is also growing interest in
extrapolating to different contexts (Dehejia et al. 2019; Gechter 2015; Bandiera et al.
2016; Meager 2019; Kowalski 2016). Still, a motivating question has not yet been
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answered: how much do results truly vary and are there characteristics of studies that
predict generalizability?

To answer this question, this paper leverages a new data set of 15,024 estimates
from 635 papers on 20 types of interventions in international development, gathered in
the course of meta-analysis. I �nd a large degree of heterogeneity in treatment effects,
some of which can be explained by study characteristics. In particular, smaller studies
tend to report larger effect sizes, as do programs implemented by NGOs or academics.
Interestingly, studies of interventions that may be thought to have a more direct causal
effect seem to exhibit less heterogeneity in treatment effects, though this result is only
suggestive given the small number of interventions considered. Taken together, these
results suggest greater attention be paid to study and intervention characteristics. This
point is worth emphasizing, since impact evaluation results are widely cited in reports
generated for policymaking but are often shared without much information about
context, study design or even standard errors. If researchers knew all the factors that
could be affecting results and could fully explain heterogeneity in treatment effects, and
if this information were included in policy reports, the dispersion of studies’ results
would not be an issue. However, even much more basic information is typically not
provided. For example, there is not room in the World Development Report, the World
Bank’s �agship annual publication that is widely circulated among policymakers, for
a detailed description of each study, nor do these reports typically include con�dence
intervals or similar information.1 Nor is this issue limited to development; at the present
time of writing, the “plain language” two-pagers the Campbell Collaboration publishes
for policymakers also provide limited contextual information and no standard errors.2

Details about studies’ implementation and other factors are frequently sparse not just
in policy reports, but also in the research papers themselves: of the studies considered
in this paper, 1 in 5 did not even make clear the basic detail of what type of organization
(government, non-pro�t, private sector, researcher or other) implemented the program,
and in more than 1 in 4 papers it was not clear how much time had elapsed between
the beginning of the intervention and the collection of midline or endline data.

In order to systematically analyze heterogeneity in studies’ results, a comprehen-
sive and unbiased sample of studies is needed. I use those studies that were included in
meta-analyses and systematic reviews by a non-pro�t research institute, AidGrade. To
date, AidGrade has conducted 20 meta-analyses and systematic reviews of different
development programs.3 These meta-analyses draw upon the results reported in the
initial studies. To more thoroughly model heterogeneity in treatment effects, ideally
one would want micro-data from large-scale, coordinated studies covering the same
outcome variables and with the same covariates collected across many different
settings. However, given that micro-data are rarely available, the results data reported

1. World Development Reports from 2010-2016 were checked for standard error information and only 8
cases were found out of thousands of cited papers.

2. Based on all the reviews posted on their website, last accessed March 16, 2016.

3. Throughout, I will refer to all 20 as meta-analyses, but some did not have enough comparable outcomes
for meta-analysis and became systematic reviews.
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in academic papers represent the typical best option. Since the results reported in
academic papers on these 20 topics were extracted from their source papers in the
same way, coding the same outcomes and other variables, I can look across different
types of programs to see if there are any more general trends that help to explain impact
evaluation results.

Before I can begin to discuss heterogeneity in treatment effects, an introduction
to Bayesian hierarchical models is warranted, as they are still quite new in economics
with notable exceptions (Bandiera et al. 2016; Meager 2019). Other disciplines such as
medicine and psychometrics have more thoroughly considered generalizability (e.g.,
Shavelson and Webb 1991; Higgins and Thompson 2002; Briggs and Wilson 2007), but
there is as yet no widespread agreement on measures of heterogeneity in economics.
I discuss the strengths and limitations of candidate measures of heterogeneity and
explicitly tie them to generalizability using the framework of Bayesian meta-analysis.
I demonstrate how these measures can help to address several key policy questions,
such as: 1) given a set of results on the effect of a particular intervention (e.g.,
conditional cash transfers) on a particular outcome (e.g., school enrollment rates),
what is the likelihood that we would accurately predict the sign of the true effect
of a similar study in another context?; 2) how well can we predict the magnitude of
that true effect? These questions are a simple extension of Type S and Type M errors
discussed by Gelman and Carlin (2014) Gelman and Tuerlinckx (2000). Type S errors
are the probability of a signi�cant result having the incorrect sign, and Type M errors
represent the magnitude by which a signi�cant point estimate differs from the true
value it seeks to estimate. While Gelman and Carlin consider replications, essentially
capturing the generalizability of a study’s results to its own setting, a similar approach
can be leveraged to consider generalizability to another setting. I �nd that without
considering study or intervention characteristics, an inference about another study will
have the correct sign about 61% of the time for the median intervention-outcome pair
in my sample. If trying to predict the treatment effect of a similar study using only
the mean treatment effect in an intervention-outcome combination, the median ratio of
the
p
MSE to that mean is 2.49 across intervention-outcome combinations. Further,

only about 6% of the observed variation in study results can be attributed to sampling
variance. I �nd about 20% of the remaining variance could be explained using a single
best-�tting explanatory variable. However, this statistic obscures a lot of heterogeneity,
with the median decrease being about 10% among the intervention-outcomes for which
this comparison was made. The results underscore both the large amount of true inter-
study variance and the importance of careful modeling of treatment effects using
micro-data.

2. Theory

Consider a set of studies on the effects of similar interventions performed in different
locations or contexts; for example, studies on the effect of conditional cash transfer
programs on school enrollment rates. Given a set of such studies, one may wish to
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predict the true effect of the intervention in another context. I will argue that one can
estimate how well one can extrapolate from a set of results using some basic measures
of heterogeneity.

However, as generalizability and models from the meta-analysis literature are
relatively under-considered within economics, an introduction to these models is
warranted. This section will therefore be structured as follows. First, I will introduce
notation and the basic models used in the meta-analysis literature. This will be followed
by a discussion of how these models can be estimated. I will then introduce a set
of potential heterogeneity measures relating to the model and motivate use of one
particular measure, �2. I will �rst motivate its use by considering how it has been
used in the literature to improve estimates of a study’s true effect in that study’s own
setting. Finally, I will show that the same approach can be used to make inferences
about the true effect of similar studies in other settings.

2.1. Bayesian Meta-Analysis

The meta-analysis literature suggests two general types of models that can be
parameterized in many ways: �xed-effect models and random-effects models.4

Fixed-effect models assume there is one true effect of a particular program and all
differences between studies can be attributed simply to sampling error. In other words:

Yi D � C "i (1)

where Yi is the point estimate in study i , � is the true effect and "i is the error term.
Random-effects models do not make this assumption; the true effect could

potentially vary from context to context. Here,

Yi D �i C "i (2)

where �i is the true effect. Random-effects models are more suitable than �xed-
effect models when there are heterogeneous treatment effects and they are also more
plausible. Random-effects models can also be modi�ed by the addition of explanatory
variables, at which point they are called mixed models. Both random-effects models
and mixed models will be considered in this paper, however, to build intuition I will
focus the exposition on the random-effects case.

A common approach taken to estimate the random-effects model is to weight each
study’s point estimate by the inverse of the variance of the estimate, using the standard
error associated with the estimate. In my analyses, I will instead take a fully Bayesian
approach. In particular, I will assume:

�i � N.�; �
2/ (3)

Yi j�i � N.�i ; �
2
i / (4)

4. Much of this exposition will draw from Gelman et al. (2013), and the interested reader is also referred
to Borenstein et al. (2009) for a gentle introduction to meta-analysis.

Journal of the European Economic Association
Preprint prepared on 10 April 2020 using jeea.cls v1.0.



Vivalt How Much Can We Generalize From Impact Evaluations? 5

where � and �2 are unknown hyperparameters and �2i is the sampling variance,
assumed known. There are two sources of variation in this model: the true inter-
study variation, �2, and the sampling variance, �2i . Equation 4 is generally justi�ed
by considering that in a given study, sample sizes are large and so the central limit
theorem holds. For a large enough study, one might be con�dent in assuming the
sampling variance known, though in principle it could be estimated with some noise.
The top level in the hierarchy, represented in Equation 3, is more controversial. �i can
alternatively be assumed to follow other distributions, and a nonparametric approach
could even be taken. However, I would like to pick one workhorse model that can be
broadly applied across many intervention-outcome combinations, as that may help in
interpreting the variance term, and a normal distribution seems best for this purpose. I
will later perform posterior predictive checks to gauge the suitability of this model for
each of the intervention-outcome combinations I study.

In practice, a researcher will observe Yi , the study’s point estimate, and its standard
error. Yi and �2i are taken as known, with the standard error conventionally used to
estimate �i .5 The other parameters, �i , � and �2, will have to be estimated. There is
a large literature on estimating these models (e.g., Gelman 2006; Rubin 1981; Efron
and Morris 1975). I outline a simple approach to estimating a fully Bayesian model,
following Gelman et al. (2013).

2.2. Estimating a Bayesian Hierarchical Random-Effects Model

Bayes’ rule says that the posterior probability is proportional to the likelihood of
the data given certain parameter values multiplied by the prior probability of those
parameters. Ultimately, I will want to estimate the parameters � (a vector of �i ), �
and � given the data. I do this by making draws from the joint posterior distribution
p.�;�; � jY /. Note that p.�;�; � jY / can be written as p.� j�; �; Y /p.�j�; Y /p.� jY /.
In estimating the model, I will draw the hyperparameters � , then�, from their marginal
posterior distributions and draw � from its posterior distribution conditional on the
drawn values of � and � . The rest of this section follows Gelman et al. (2013) in
writing down the posterior distributions for p.� j�; �; Y /, p.�j�; Y /, and p.� jY / that
will be used.

If there areN studies i in a given intervention-outcome combination, p.� j�; �; Y /
factorizes into N components:

p.� j�; �; Y / D
Y
i

p.�i j�; �; Y / (5)

Equation 3 provides the prior for �i , where � and � are unknown hyperparameters
that will need to be estimated and Equation 4 provides the likelihood. Conditioning on

5. It should be noted that the standard error may estimate �i only with some noise. I will not be able to
assess this in my data, but the approximation is generally considered unlikely to be problematic (Gelman
et al. 2013) and if the �t were really poor this would show up in the �t of the model, which I will check
using posterior predictive checks.

Journal of the European Economic Association
Preprint prepared on 10 April 2020 using jeea.cls v1.0.



Vivalt How Much Can We Generalize From Impact Evaluations? 6

the distribution of the data, the posterior is:

�i j�; �; Y � N. y�i ; Vi / (6)

where

y�i D

Yi
�2
i

C
�

�2

1

�2
i

C
1
�2

, Vi D
1

1

�2
i

C
1
�2

(7)

and Y is a vector of all Yi within the intervention-outcome combination.
I will assume a uniform prior for �j� following Gelman et al. (2013) and update

based on the data. As the Yi are estimates of � with variance .�2i C �
2/, the posterior

of � is given by:
�j�; Y � N.y�;V�/ (8)

where

y� D

P
i

Yi
�2
i
C�2P

i
1

�2
i
C�2

, V� D
1P

i
1

�2
i
C�2

(9)

For � , I again use a uniform prior over a large range of possible values. To
obtain p.� jY /, �rst note that p.� jY / D p.�; � jY /=p.�j�; Y /. The denominator of
this equation is given by Equation 8; for the numerator, p.�; � jY / is proportional to
p.�; �/p.Y j�; �/ and the marginal distribution of Yi j�; � is known:

Yi j�; � � N.�; �
2
i C �

2/ (10)

Hence, for the numerator:

p.�; � jY / / p.�; �/
Y
i

N.Yi j�; �
2
i C �

2/ (11)

Substituting into the equation for p.� jY /, this yields:

p.� jY / /
p.�/

Q
i N.Yi j�; �

2
i C �

2/

N.�jy�;V�/
(12)

As this equation must hold for any �, including y�, y� can be substituted for �, and
it is this expression that I will evaluate:

p.� jY / /
p.�/

Q
i N.Yi jy�; �

2
i C �

2/

N.y�jy�;V�/
(13)

/ p.�/V 1=2�

Y
i

.�2i C �
2/�1=2exp

 
�
.Y � y�/2

2.�2i C �
2/

!
(14)

Given the equations for the posteriors, estimating the parameters is merely a matter
of making simulations. First, I approximate a uniform distribution for the prior of �
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by generating 2,000 equally spaced points over a large range.6 Then, I sample from
the posterior of � jY , �j�; Y and �i j�; �; Y , 10,000 times. R code implementing this
approach is included in an appendix.

It should be noted that all these calculations are done within each intervention-
outcome combination, independently. It would be possible to analyze data at the
intervention level instead or add a level to the model such that the mean true effect of
one intervention-outcome combination can be informative about the mean true effect
of another intervention-outcome combination. Pooling results across outcomes within
an intervention would have the bene�t of increasing the number of observations that
could be leveraged in an analysis; it will be shown that not many studies cover the
same intervention-outcome combination. It could also mitigate the issue that multiple
results on different outcomes are sometimes taken from the same paper, leading to
dependence between intervention-outcome combinations. However, this approach also
has a major drawback: my focus in this paper is on estimating heterogeneity, and these
estimates could be arti�cially in�ated by pooling across diverse outcomes. Further, I
will be wanting to explain the observed variation in treatment effects, and some of
the explanatory variables may have different relationships with different outcomes.
Aggregating the data could make it harder to explain the variation. It could also
make the source of the results less transparent. I will thus present results separately
for each intervention-outcome combination as a conservative approach, but caution
should be taken in interpreting results across intervention-outcomes given that they
are correlated.

2.3. Estimating a Mixed Model

One way to extend the basic random-effects model would be by adding explanatory
variables, making it a mixed model. The estimation strategy is similar. Here, as the
simplest model, I will assume:

Yi D ˛CXiˇC ei C ui (15)

with ei � N.0; �2/ capturing the true unexplained variance between studies and
ui � N.0; �2i / capturing the sampling error. Again, posterior distributions will be
constructed from the priors and likelihood functions for each parameter to be estimated.
Online Appendix D contains a derivation of the relevant posterior distributions, which
are similar to the posterior distributions used in the random-effects model, and the
estimation procedure is analogous. To estimate the parameters, I will again start by
generating the uniformly-distributed prior for � over a large range, then sampling
from the posterior of � jY , ˇj�; Y and ei jˇ; �; Y . It should be noted that the �2 that
is estimated here will be smaller than the �2 estimated using a random-effects model,
since some of the variance in Yi will have been explained by Xi . For clarity, I will

6. Speci�cally, for each intervention-outcome I generate the standard deviation of point estimates and
generate 2,000 points spaced equally between 0 and 10*sd.
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henceforth denote this “residual” �2 as �2R. As with the random-effects model, sample
R code for implementing the estimation procedure is included in an appendix.

2.4. Heterogeneity Measures

As a measure of the true inter-study variation, �2 may be an attractive measure of
heterogeneity. But there are many qualities one might like a measure of heterogeneity
to have. This section discusses desirable properties for a measure of heterogeneity and
shows how �2 compares to other potential measures that could be used.

First, it should be noted that some measures capture the variability of results and
some measure the proportion of variation that can be explained. Both types of measures
can be important: if the variation can be explained, it may not be a problem in making
inferences; on the other hand, if overall variation is large, then even explaining a large
proportion of it may result in inaccurate predictions.

Within the �rst category, the most obvious measure to consider is the variance of
studies’ results within a given intervention-outcome combination, var(Yi ). A potential
drawback to using this measure is that studies that have larger effects or are measured
in terms of units with larger scales will have larger variances. One can only make
comparisons between data with the same scale. Hence, the literature suggests either: (1)
restricting attention to those outcomes that have the same natural units (e.g., enrollment
rates in percentage points); (2) converting results to be in terms of a common unit, such
as standard deviations; or (3) scaling the measure, such as by the mean result, to create
a unitless �gure. Each approach has drawbacks. Restricting attention to outcomes in
the same natural units can be limiting. Converting results to be in terms of standard
deviations can be problematic if the standard deviations themselves vary, but it is a
common approach in the meta-analysis literature. Scaling the standard deviation of
results within an intervention-outcome combination by the mean result within that
intervention-outcome creates a unitless measure known as the coef�cient of variation
(CV), which represents the inverse of the signal-to-noise ratio. As a unitless �gure, this
measure can be compared across intervention-outcome combinations with different
natural units, however, it is not immune to criticism, particularly in that it may result
in large values as the mean approaches zero.

The measures discussed so far focus on variation. However, if the variation could
be explained, it would no longer result in inaccurate predictions in a new setting. As
mentioned, the variation in observed treatment effects is:

var.Yi / D �
2
C �2i (16)

where �2 represents the true inter-study variation and �2i is the sampling variance. �2

thus represents the maximum inter-study variation that could be explained by a model.
As the true inter-study variation, �2 could be an attractive measure of heterogeneity,
however, it suffers from the same problem as var(Yi ) in that it depends on the outcome’s
units.

One may also be interested in the proportion of the variation that is not sampling
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Table 1. Desirable properties of a measure of heterogeneity.

Does not depend on the
precision of individual
estimates

Does not depend on the
estimates’ units

Does not depend on the
mean result in the cell

var.Yi / X X

CV.Yi / X X

�2 X X

I2 X X

Notes: The “precision” of an estimate refers to its standard error. A “cell” here
refers to an intervention-outcome combination. Each measure could be applied to
summarize the remaining variation after �tting the data to a more complicated model.

error. A common such measure is:

I 2 D
�2

�2 C s2
(17)

where s2 is a measure of the sampling variance that is taken to be held in common
across a set of studies.7

The I 2 statistic is an established unitless metric in the meta-analysis literature that
helps determine whether a �xed or random-effects model is more appropriate. The
higher the I 2, the less plausible it is that sampling error drives all the variation in
results, and the more appropriate a random-effects model is. While I 2 has the nice
property that it is unitless and disaggregates sampling variance as a source of variation,
estimating it depends on the weights applied to each study’s results and thus, in turn,
on the sample sizes of the studies. To get a full picture of the extent to which results
might generalize, then, multiple measures may be helpful.

In short, each of these statistics has its advantages and disadvantages. Table 1
summarizes which of the desirable properties of a measure of heterogeneity are
possessed by each of the proposed measures. Of these measures, a Bayesian may prefer
measures that separate out sampling variance, such as �2 or I 2. While I 2 depends
on the sampling variance, a Bayesian might consider this an advantage rather than a
disadvantage, as it tells us something about the informativeness of a result. To further
motivate the focus on �2, and to a lesser extent I 2, I will describe a couple of situations
in which these measures may be particularly useful.

7. Higgins and Thompson (2002) in their seminal paper de�ning the I2 statistic, take a weighted mean
of the

s2 D

.k � 1/
P

1

�2
i�P

1

�2
i

�2
�
P�

1

�2
i

�2 ;
where k is the number of studies. When there is a small number of studies, this may serve to slightly
depress s but represents the conventional approach to estimating I2.
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2.5. Leveraging Heterogeneity Measures to Improve Estimates

First, consider a lab experiment conducted in several settings, as in the “Many Labs”
project (Klein et al. 2014). Each experiment has high “internal validity”, de�ned as the
ability to identify the causal effect of the treatment (Banerjee and Du�o 2009). One
can also look across experiments to gauge the “external validity” of one set of n results
to another setting, i.e., how well observed point estimates Y1; Y2; : : : ; Yn can be used
to jointly predict the point estimate of another study, Yj , or the true underlying effect
�j , perhaps in conjunction with a more complicated model.

Importantly, the best estimate of �j is not Yj . Rather, Yj may be improved upon by
considering information external to study j , i.e., data from other studies i D 1; : : : ; n.
For example, it is possible that study j , while unbiased, had a very small sample size.
To the extent to which the other studies are informative about the effect in this setting,
one would want to leverage those data to improve the estimate of �j . The b�j that
is estimated from the Bayesian model is a “shrinkage estimator”, and the degree of
shrinkage depends on the precision of the estimate relative to �2:b�j D .1� �j /Yj C �j� (18)

where �j D �2j =.�
2
j C �

2/. These estimators have a storied past (e.g., Rubin 1981;
Efron and Morris 1975; Stein 1956).

In this example, knowing the relationship between sampling variance and �2 is
clearly helpful and can improve estimates of what a replication would �nd in the same
setting. In effect, this example can be thought of as giving us the generalizability of a
result to its own setting.

As a second motivating example, consider the case in which one would like to know
whether two parameters, �j and �k , are equal. This could be thought of as testing for
heterogeneity in treatment effects by setting or, alternatively, as testing for differences
between treatment arms in a given setting. Suppose the sampling variance is equal
across j and k for simplicity, i.e., �j D �k D � . In this case, as detailed by Gelman
and Tuerlinckx (2000), a classical test would call an observed difference signi�cant at
p < 0:05 if:

jYj � Ykj > 1:96
p
2� (19)

If a Bayesian were to construct a 95% con�dence interval for �j � �k , however, this
interval would be represented byb�j �b�k ˙ 1:96pVj C Vk , where Vj is the variance
of �j j�; �; Y . It will later be observed that Vj D 1=.1=�2j C 1=�

2/, and the Bayesian
analog to the classical test would be:

jYj � Ykj > 1:96
p
2�

s
�2 C �2

�2
(20)

This example illustrates that a measure analogous to I 2 is important in discerning
heterogeneity across studies.8

8. As the number of studies increases, s2 approaches �2 assuming a common � .
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Gelman and Tuerlinckx (2000) use this framework to examine what they call Type
S and Type M errors, further discussed in Gelman and Carlin (2014). For Gelman and
Tuerlinckx (2000), a Type S (sign) error is the probability that a claim is made that
�j > �k when in reality �j < �k .9 A Type M (magnitude) error can be interpreted as
an exaggeration factor, i.e., the expected value of a replication effect divided by the
hypothesized true effect. Gelman and Carlin (2014) consider both types of error only
for those results that were statistically signi�cant and focus on predicting the effect of
a replication in the same setting.

I argue that a similar approach can be taken to consider generalizability to another
setting. Instead of Gelman and Tuerlinckx’s Type S error, a policymaker may care
about the probability that �j < 0 whenb�j > 0 or �j > 0 whenb�j < 0, regardless of
the statistical signi�cance of the estimate of �j . Similarly, analogous to the Type M
error, a policymaker may care about the MSE of an estimate of �j , and this MSE can
be predicted given estimates of �2.

In summary, �2 and I 2 are intrinsically related to the problem of how one might
interpret evidence from a particular study.

2.6. Using Heterogeneity Measures to Extrapolate

With this background in place, I will now tie together the heterogeneity measures used
in the literature and generalizability. Given a population P of potential studies, I will
de�ne generalizability as the ability to draw correct inferences from a set of studies, S ,
about a study j .10 The inferences I will focus on are about the sign and magnitude of �j ,
answering the two questions posed in the introduction, namely 1) given a particular set
of studies, how likely are we to correctly guess the sign of the true effect of a similar
study in another context?, and 2) by what magnitude is our prediction likely to be
wrong?

These are not the only potential questions of interest when thinking about
extrapolating from a set of studies. For example, one might want to know the

9. Gelman and Tuerlinckx (2000) consider a claim made �j > �k if the estimate of �j is signi�cantly
greater than the estimate of �k .

10. Importantly, the target study, j , may or may not be in the same setting as any study in S and it
need not even share the same implementation details. However, �i and �j should be draws from the same
distribution for any i in S ; this enables any parameters estimated using S to be informative about �j .
This distributional assumption matters when considering literature that are biased, such that the studies
that were carried out were special in some way that affects their treatment estimates. Note, however, that I
am explicitly not imposing that the true effects must be similar. If there are a variety of contexts and study-
generating processes causing a wide dispersion of treatment effects, that should be captured in the �2 that
is estimated using the studies in S . Instead, I only require the true effects to be from the same distribution.

More research into the biases introduced in the study-generating process is welcome. However, I regard
the question of whether the results of many studies could be described as coming from the same distribution
as an empirical question - part of the broader question of how well the model �ts the data. Another possible
way in which the model could be misspeci�ed is if the error is not truly normally distributed. Any model
misspeci�cation can be considered empirically, in that one could �t a portion of the data to the model and
use it to try to make predictions out of sample, though one would not be able to attribute the source of the
error to e.g., research biases or other model misspeci�cations. I will consider this issue later in the paper.
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probability that the true effect of a program in a given context falls above a certain
non-zero threshold or that it falls within a given range. One may instead want to
know the likelihood that a potential study will �nd a signi�cant result assuming a
given sample size and standard deviation. However, the two focal questions about sign
and magnitude are certainly part of what one might care about.11 I concentrate on
these questions for clarity but note that the model can be used to answer many other
questions.

From here, the approach is straightforward. First, consider the probability that
one can accurately predict the sign of the true effect of a program in a given study
j that is yet to be conducted.12 The best guess as to the effect of a program in a
new setting, without specifying a more complex model, is simply y�, the best estimate
of �. Given values of �, �2 and �2j , one can calculate how likely it is that a correct
inference will be made about the sign of the true effect of the program. Figure 1a plots
curves representing particular constant probabilities assuming � D 0:12 (the mean
standardized effect in the data) over various �2 and sampling variances. For simplicity
in exposition I assume a common sampling variance across studies. Figure 1b similarly
plots the average magnitude of the prediction error, again using standardized values. In
practice, � and �2 can be estimated using allN observations within each intervention-
outcome combination, and for suf�ciently high values of N one may think these
estimated y�N and y�2N are stable and approximate� and �2. The sampling variance was
assumed known in generating these simulated curves.13 The �gures are overlaid with
triangles with indicative values for the 57 intervention-outcome combinations used in
this paper. For these markers, estimates of � are based on all N observations in each
intervention-outcome combination, and Higgins and Thompson’s approximation of a
common sampling error, s, is assumed to approximate � (2002).14 These �gures show
that both the sampling variance and the true inter-study variation, �2, are important for
making correct inferences about another study, but the two also interact: for large � ,
decreasing �2 will not lead to large improvements in the accuracy of one’s inferences.
The intuition is that if the data are suf�ciently noisy, whether the true effects vary from

11. For instance, a policymaker may prefer positive results to negative results for political reasons; they
may also imagine bene�ciaries might more strongly dislike a given harm than appreciate a comparable
bene�t. Then whether a potential program was likely to have a positive effect in their context would be
important. The magnitude of the likely effect of the program is also something that would naturally enter
into one’s evaluation of the bene�ts of a particular program, and researchers conducting power calculations
would also like to know the likely effect of a program in a given setting. Thus, error in predicting the
magnitude of these effects is important.

12. This exposition will refer to results of a study. One may think that a study’s results will be a function
of the exact program variant and the context. At this stage, I do not have to model a study’s results more
explicitly. In particular, a program may vary in implementation or content from one study to another, so
long as this variance can be estimated.

13. In reality, each study has its own sampling variance and the literature uses the standard error of a
point estimate to estimate it.

14. This is because each study within an intervention-outcome combination has a different sampling
variance, so some aggregate measure must be created. I only use s when a common measure is required,
i.e., only in this �gure and in estimates of I2, never in the estimation of any �i , �, or �2.
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study to study will not be pivotal in making the correct prediction. On the other hand,
reducing the sampling variance will always help, even in cases of large �2.

The above exposition focused on a random-effects model for the sake of clarity,
without considering any potential explanatory variables. If one could leverage other
data to build a better model, one may be able to obtain better estimates. Later in this
paper, I will leverage mixed models that do seek to explain some of the observed
variation.

Figure 2 shows how the two aforementioned questions about sign and magnitude
would be answered by a random-effects model if applied to one illustrative
intervention-outcome combination in the data (the effect of conditional cash transfers
on school enrollment rates). In particular, to create each point, results from n studies
relating to the effect of conditional cash transfers on enrollment rates (point estimate
and standard error) are independently drawn and a best estimate of �nC1, b�nC1, is
formed. Since this is a random-effects model,b�nC1 is simply y�nC1. Then this estimate
of �nC1 is compared to a draw of �i generated from �i � N.y�N ; y�

2
N ), where y�N and

y�2N are the estimates of � and �2 that are obtained from the random-effects data using
all data for that intervention-outcome combination, assuming they approximate the true
underlying parameter values � and �2.15 Similar �gures for all intervention-outcomes
in the data are provided in an appendix. In these �gures, the predictions do not improve
by much after the �rst few studies, an important point that will be discussed more later.

These �gures assume the Bayesian model is true. I can empirically examine how
well the model �ts the data. While Figure 2 compares the estimates ofb�nC1 to values
of �i drawn from �i � N.y�N ; y�

2
N /, one may instead wish to be more agnostic as to

whether the model is correctly speci�ed and compare the predictions of �nC1 to a
draw of Yi .16 These �gures are provided in Online Appendix E. The �gures making
a comparison to b� i and Yi often have similar probabilities of making the correct
inference about the sign of a similar study or its magnitude. Those using b� i do not
necessarily do better or worse than those using Yi . When real data are used, however,
drawn without replacement, it is no longer the case that the probability of making
the correct inference about the sign of a similar study or its magnitude monotonically
improves with the number of data points used.17 Later in the paper, I will perform

15. The �gures do not show a monotonic relationship between the accuracy of the estimate and the
number of studies used because the studies can have quite different values from one another so the
prediction error can be quite large at times. The studies are drawn in a random order in each simulation
and increasing the number of simulations helps to average this out across simulations.

16. Yet another alternative would compareb�nC1 to a value of �i estimated from a draw of Yi as in
Equation 18. One might think that this estimated �i would capture the true effect of the study better
than Yi , due to pooling. Nonetheless, I focus here on comparisons with Yi to remain agnostic as to the
appropriateness of the model.

17. An example can clarify why this is the case. Consider an intervention-outcome combination which
has three point estimates: two small, insigni�cant and negative ones and one large, precisely-estimated
positive one. If the two negative data points are drawn �rst, and used to generate the estimate of the third,
they will mispredict the sign of the last, positive data point. If a negative data point and the positive data
point are drawn �rst, they will also mispredict the remaining negative data point. Hence, the probability of
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Figure 1. Heterogeneity measures and extrapolation. The top �gure plots the probability of making
the correct inference about the sign of the underlying parameter �j of some new study, j , assuming
a mean standardized effect size of � D 0:12 and that �2 and �2 are known. The bottom �gure plots
the MSE of the prediction of the magnitude of �j , under the same assumptions. The range of values
for � and � plotted here was chosen because these represent common estimated values in the data;
the overlaid triangles represent intervention-outcome combinations in the data, using standardized
values. For each intervention-outcome combination, � is estimated using a random-effects model;
to estimate a � held in common across the intervention-outcome combinations, I use Higgins and
Thompson’s approximation, s.
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Figure 2. Example predicting the effects of a conditional cash transfer program on enrollment rates.
These �gures plot: (1) the probability of making the correct inference about the sign of the underlying
parameter �nC1 of some new study, given a certain number of studies, n, with estimates with which
to make that guess; (2) the MSE of the best guess of �nC1.
n represents the number of studies used to form the estimate; for each intervention-outcome
combination the maximum n used isN � 1, so as to leave something to predict. 100,000 simulations
are used and the mean probability of making the correct inference about the sign and the MSE is
calculated for each n as described in the text. In the bottom part of the �gure, the black line indicates
the mean MSE; the 95% interval is provided by the shaded area. In the top part of the �gure, the
black line represents the mean probability of making the correct inference about the sign, but a 95%
interval is not added since for any one given run the outcome will be 0 (incorrectly predicted the sign)
or 1 (correctly predicted the sign).

additional checks to gauge the �t of the model.

correctly predicting the sign of the last study is actually zero when the maximum number of data points
are used, no matter how many simulations are run.
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Again, it should be noted that these are very simple models with no explanatory
variables. A more complicated mixed model should obtain even better results, although
in this particular example the probability of making the correct inference about the sign
of �j is already quite high and the MSE quite low.18

3. Data

This paper uses a database of impact evaluation results collected by AidGrade, a
U.S. non-pro�t research institute founded by the author in 2012. Its main focus is
on gathering results of impact evaluations and analyzing them through meta-analysis.
AidGrade began 10 meta-analyses each in 2012 and 2013, and it followed the standard
stages that are part of any Cochrane review:19 topic selection; a search for relevant
papers; screening of papers; data extraction; and data analysis.

In the sections that follow, I will brie�y describe the main features of the data
collection process, focusing on how interventions and studies were selected for
inclusion, how variables were selected, and how results were extracted. A more
detailed account is provided in an appendix. There were minor differences in the
procedures followed for the meta-analyses began in 2012 and 2013; I will describe
the process followed for those meta-analyses started in 2013 and note any differences
in the process that pertain to the meta-analyses begun in 2012.

3.1. Selection of Interventions

Four AidGrade staff members each independently made a preliminary list of
interventions, which were then combined. In 2012, there was no staff and this list was
made by the author. Pilot searches were conducted using SciVerse and Google Scholar
to determine whether there might be enough studies for a meta-analysis.20 These pilot
searches shortlisted 12 interventions in 2012, and 42 interventions in 2013. These were
posted on AidGrade’s website in 2013 and the general public was asked to vote on
interventions they wanted covered. Respondents could select up to three interventions
from those on the shortlist, and a space was provided for adding an “other” option. In
the eight-day voting window, 452 votes were cast by 158 individuals, with 20 votes cast
for the “other” option. The same procedure was followed in 2012, but the public vote
did not in�uence the interventions ultimately selected, as it was discovered that two of
the 12 interventions posted on the website that year did not have any outcome variables
in common, which would preclude any meta-analysis. Thus, the other 10 interventions

18. This is a function of conditional cash transfer programs typically having small positive effects on
enrollment rates.

19. The interested reader is referred to Part 2 of the current Cochrane Handbook for Systematic Reviews
of Interventions by Higgins and Green (version 5.1 2011).

20. At this stage, the pilot searches only needed to identify two papers for an intervention to not be
rejected.
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with outcome variables in common were selected.
The outcome variables were categorized into three types, de�ned as follows. First,

a set of “strict” outcomes captured results that measured the exact same thing, e.g.,
height in centimeters. “Loose” outcomes were those that measured the same variable
but were de�ned in slightly different ways across studies. For example, different
papers might use different hemoglobin threshold values for anemia. Finally, a set of
“broad” outcomes was added retroactively to capture whether the outcome was an
“economic”, “educational”, or “health” outcome. As it was important for the meta-
analyses to compare similar outcomes, a rule was set that after searching for and
screening papers for inclusion, the identi�ed papers would be checked for “strict”
outcomes held in common; if at least three papers on a common outcome were not
found, that intervention would be replaced.

In 2013, from the shortlist of 42 interventions only 10 could be covered due to
capacity constraints. These were selected partially through randomization to ensure
balance between the included and excluded topics. However, the winner of the public
vote, women’s empowerment programs, was automatically selected to be included
in the set of meta-analyses. In this process, interventions were matched prior to
randomization using nearest neighbor matching.21 After randomly restricting attention
to half the topics, those covered by the most papers in the pilot searches were selected
for inclusion, based on having found that many interventions from the meta-analyses
begun in 2012 had relatively few papers sharing outcome variables. However, some
interventions were still only covered by three studies. The interventions selected in
each round of meta-analysis are listed in Table 2.

3.2. Identification of Papers

A comprehensive literature search was done using the search aggregators SciVerse,
Google Scholar, and EBSCO/PubMed. The online databases of the Abdul Latif Jameel
Poverty Action Lab, Innovations for Poverty Action, the Center for Effective Global
Action and the International Initiative for Impact Evaluation were also searched.
Finally, the references of all existing meta-analyses or systematic reviews turned up
by the search were reviewed for completeness.

21. To obtain balance among the interventions included and excluded, each shortlisted topic was matched
with another of the shortlisted topics based on how many likely impact evaluations the pilot searches
identi�ed for each; how many votes they received in the public vote; the overall theme of the interventions
(e.g., education, health) according to the database of an external organization, AidData, after matching the
interventions to AidData activity codes; and the recent aid commitments for the intervention as reported in
AidData’s database. The theme had to match exactly within each pair. For each of the three other factors,
each topic was assigned a score on an index between zero and one representing where it stood among the
other interventions; the index took the value: (topic value - minimum value among topics) / (maximum
value among topics - minimum value among topics). 32 topics were successfully matched in this way
using nearest neighbor matching without replacement. The remaining unmatched topics were singletons
under their respective themes. For example, if there were an odd number of health-related interventions,
the last health-related intervention would be by itself after others were matched. These last topics were
independently randomized.
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Table 2. List of development programs covered.

2012 2013

Conditional cash transfers Contract teachers
Deworming Financial literacy
Improved stoves HIV education
Insecticide-treated bed nets Irrigation
Micro�nance Micro health insurance
Safe water storage Micronutrient supplementation
Scholarships Mobile phone-based reminders
School meals Performance pay
Unconditional cash transfers Rural electri�cation
Water treatment Women’s empowerment programs

Notes: This table lists the development programs considered in this paper. Three titles here may
be misleading. “Mobile phone-based reminders” refers speci�cally to SMS or voice reminders
for health-related outcomes. “Women’s empowerment programs” required an educational com-
ponent to be included in the intervention and it could not be an unrelated intervention that
merely disaggregated outcomes by gender. Finally, “micronutrient supplementation” was ini-
tially too loosely de�ned; this was narrowed down to focus on those providing zinc to chil-
dren, but the other micronutrient papers are still included in the data used in this paper.

Any impact evaluation on a given intervention was included, except those in high-
income countries.22 Both published studies and working papers were included. The
particulars of the search and inclusion criteria used for each intervention is available
in an online appendix. Screening proceeded in steps with the title, then the abstract,
and �nally the full text screened.

3.3. Selection of Variables and Data Extraction

All data were entered independently by two different coders and any discrepancies
were reconciled by a third. In total, apart from a �eld specifying the topic, 85
�elds were coded for each paper, including 13 �elds with identifying information
(author, publication year, program name, etc.); these were converted to 89 variables;
the full list of variables and the coding manual is available as an online appendix).
Additional topic-speci�c variables were coded for some interventions, such as the
median and mean loan size for micro�nance programs. This paper focuses on the
variables held in common across the interventions, except when a mixed model is
used for several intervention-outcome combinations covered by a large number of
studies. The common variables include general identifying information (such as author
and publication year); methodological information (such as the identi�cation strategy
used, whether the study was randomized by cluster, and whether it was blinded),
characteristics of the intervention (such as location, duration between the start of
intervention to the start of midline or endline data collection, intervention implementer,

22. The World Bank (2015) country classi�cation system was used for this, with “high-income” countries
excluded.
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and characteristics of the sample), whether the study reported key information in the
paper text (such as attrition and study costs), and �nally, the results themselves.

Several key decisions relating to the data collected are worth highlighting. First,
there was little choice over the selection of the results variables, since these needed to
capture the actual way that results were reported in a paper. For the variables capturing
study characteristics there was more choice, and here it was thought important for the
interpretation of the results to know more about the methods used and context of the
study.

Since this paper pays particular attention to the program implementer, it is worth
discussing in more detail how this variable was coded. Implementers could initially be
coded as governments, NGOs, private sector �rms, or academics. There was also a code
for “other” or “unclear”. It was ultimately decided to consider NGOs and academic
research teams together as it turned out to be practically dif�cult to distinguish between
them in the studies, especially as the papers frequently used passive voice (e.g., “X was
done” without noting who did it).

Since this paper focuses on heterogeneity of impact evaluation results, I focus
on the “strict” outcomes, de�ned previously as outcomes that measured the exact
same thing. Analyzing studies with “strict” outcomes helps exclude those sources of
variation that stem from different outcome measures being used.23

There were also several closely related “strict” outcome variables, such as diarrhea
prevalence and diarrhea incidence, or enrollment rates and attendance rates.24 I keep
these outcomes separate because they do not follow the “strict” rule: they are not
measuring the exact same thing, and one would consequently expect some natural
variation in their results.

Studies tended to report results for multiple speci�cations. AidGrade focused on
those results least likely to have been in�uenced by author choices, i.e., speci�cations
with the fewest controls, apart from �xed effects. Where a study reported results
using different methodologies, coders followed the internal preference ordering of
prioritizing randomized controlled trials, followed by regression discontinuity designs
and differences-in-differences, followed by matching, and to collect multiple sets of
results when they were unclear on which to include. Where results were presented
separately for multiple subgroups, coders collected both the aggregate results and any

23. The exceptions to this rule were that the impact of bed nets on malaria and the impact of micronutrients
on anemia were considered despite malaria and anemia being “loose” outcomes, because these outcomes
were typically among the primary goals of their respective interventions. Malaria was the unique outcome
held in common across many studies of bed nets programs, and including anemia also results in fewer
papers being discarded for not having outcome variables in common.

24. “Prevalence” measures capture the proportion of the population experiencing the disease or symptom
at one point in time. “Incidence” measures instead capture the rate of occurrence of new cases of a disease or
symptom over a period of time. It is important to distinguish between these, as they may differ substantially.
For example, if an illness takes a long time to cure, shifts in its prevalence rate may not be easily apparent,
whereas shifts in its incidence rate may be more rapidly observed. These outcomes also are reported in
different ways.
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results by subgroup.25

There may seem to be some tension between using the authors’ preferred
methodology where speci�ed but also focusing on those results with the fewest
controls. This approach was taken due to the belief that it would be much easier
for researchers to consciously or subconsciously engage in speci�cation searching
by adding covariates or restricting attention to certain subgroups. In contrast, it
may be harder to engage in speci�cation searching by changing methodology. First,
researchers tend to be rewarded for pursuing the most credible methods wherever
possible, and so one might expect that where researchers have a choice they will always
pick the most credible methods. Further, the method used was often implicitly selected
before the beginning of the study; most of the studies in the database are randomized
controlled trials, and these are usually planned in advance. There were few instances
in which a paper reported results using two different methods.

3.4. Data Description

I focus on those papers that passed all screening stages in the meta-analyses. The search
and screening criteria were very broad and, after passing the full text screening, the
vast majority of papers that were later excluded were excluded merely because they
had no outcome variables in common or did not provide suf�cient data for analysis
(for example, not providing data that could be used to calculate the standard error
of an estimate or displaying results only graphically). The small overlap of outcome
variables is a surprising and notable feature of the data. In some cases, multiple papers
by the same authors or multiple versions of the same paper reported results for the
same outcomes; as these were correlated, I used only the most recent result for each
outcome in analysis. After removing these duplicates, the number of observations
drops from 15,024 results collected across 635 papers to 1,932 results from 307 papers
when restricting attention to only those results that can be compared with results from
another paper on the same intervention-outcome. The implication is that even when
papers report on common outcomes, those common outcomes represent a small subset
of the results a paper reports.

These 1,932 results include multiple results from the same intervention-outcome-
paper on different subgroups or over different time periods. For most of the analyses
in this paper, I collapse the data to one observation per intervention-outcome-paper
to avoid dependence between observations (Higgins and Green 2011). Where results
had been reported for multiple subgroups (e.g., women and men), I aggregate them as
in the Cochrane Handbook’s Table 7.7.a. Where results were reported for multiple

25. There was one exception to this rule, which was if an author appeared to only be including a subgroup
because results were signi�cant within that subgroup. For example, if an author reported results for children
aged 8-15 and then also presented results for children aged 12-13, only the aggregate results would be
recorded, but if the author presented results for children aged 8-9, 10-11, 12-13, and 14-15, all subgroups
would be coded as well as the aggregate result when presented. Authors only rarely reported isolated
subgroups, so this was not a major issue in practice.
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time periods (e.g., six months after the intervention and twelve months after the
intervention), I use the most comparable time periods across papers. Sometimes, a
paper provided more than one set of subgroups, such as results for girls and boys and,
separately, results for three different age groups. When aggregating across different
subgroups, I use the minimal set of subgroups that could be aggregated (i.e., girls and
boys in the example). This minimal set was comprised of 887 results. Aggregating them
reduced the number of results to 698 (across 307 papers) if using the “loose” outcomes
and retaining those intervention-outcome combinations covered by at least two papers.
For the outcomes considered in this paper (the “strict” outcomes plus the loose
outcomes for malaria and anemia prevalence), this reduced the number of results to 646
(across 276 papers) if retaining those intervention-outcome combinations covered by
at least two papers and 576 results (across 251 papers) if retaining those intervention-
outcome combinations covered by at least three papers. Finally, one paper appeared
to misreport results, suggesting implausibly low values and standard deviations for
hemoglobin. This observation was excluded and the paper’s corresponding author
contacted.

Most analyses in this paper use the unstandardized “raw” results data reported in
papers, however, the data were also standardized to be able to provide a set of results
more comparable with the literature and so as not to overweight those outcomes with
larger scales in some analyses. The typical way to compare results across different
outcomes is to use the standardized mean difference, de�ned as SMDD .�1��2/=�p ,
where �1 is the mean outcome in the treatment group, �2 is the mean outcome in the
control group, and �p is the pooled standard deviation.26 The signs of the results were
also adjusted so that a positive effect size always represents an improvement. Data
could not always be standardized, as the standard deviation of the outcome variable was
often not reported. Thus, the standardized data consist of only 612 results if retaining
those intervention-outcome combinations covered by at least two papers and 561 if
retaining those intervention-outcome combinations covered by at least three papers.

Figure 3 shows the raw distribution of effects for each of the intervention-outcome
combinations. This �gure suggests a fair amount of variation. In general, interventions
are rarely distinguishable from one another in terms of their effects on a particular
outcome, with their effect sizes tending to overlap substantially. Table B.1 in Online
Appendix B lists the interventions and outcomes and describes their results in a bit
more detail, providing the distribution of signi�cant and insigni�cant results. It should
be emphasized that the number of negative and signi�cant, insigni�cant, and positive
and signi�cant results per intervention-outcome only provides ambiguous evidence of

26. Ideally, the study would report �p , in which case that value was used. When it reported standard
deviations separately for the control and treatment group, these were pooled using the formula in the
Cochrane Handbook’s Table 7.7.a. When these data were not available, the standard deviation in the control
group was preferentially used, followed by the standard deviation in the treatment group, followed by
the standard deviation of the outcome variable from other studies within the same intervention-outcome
combination.

Journal of the European Economic Association
Preprint prepared on 10 April 2020 using jeea.cls v1.0.



Vivalt How Much Can We Generalize From Impact Evaluations? 22

the typical effects in that intervention-outcome. Simply tallying the numbers in each
category is known as “vote counting” and can be misleading.27.

Table 3 further summarizes the distribution of papers across interventions and
highlights the fact that papers do not frequently study the same outcomes. This is
consistent with the story that researchers each want to publish one of the �rst papers on
a topic. Figure B.2 in Online Appendix B disaggregates these numbers by intervention-
outcome combination.

Table 3. Descriptive statistics: Distribution of strict outcomes.

Intervention Number of Mean papers Max papers
outcomes per outcome per outcome

Conditional cash transfers 15 18 36
Contract teachers 1 3 3
Deworming 11 13 17
Financial literacy 3 4 5
HIV/AIDS education 5 3 4
Improved stoves 4 2 2
Insecticide-treated bed nets 1 10 10
Irrigation 2 2 2
Micro health insurance 3 2 2
Micro�nance 6 4 5
Micronutrient supplementation 20 24 37
Mobile phone-based reminders 2 3 3
Performance pay 1 3 3
Rural electri�cation 3 3 3
Safe water storage 1 2 2
Scholarships 3 2 3
School meals 3 3 3
Unconditional cash transfers 3 10 13
Water treatment 3 7 9
Women’s empowerment programs 2 2 2

Average 4.6 6 8.2

Notes: This table shows the distribution of strict outcomes across interventions. As
described in the text, two “loose” outcomes, malaria and anemia prevalence, are included
due to their having frequently been among the primary goals of the intervention.

4. Results

The previous sections motivated the use of some measures of heterogeneity, explicitly
linked them to generalizability through a Bayesian model, and described the data.

27. For example, if a review of the literature uncovered many papers with small sample sizes and
insigni�cant effects, one might be tempted to conclude the intervention “didn’t work” when it could merely
be that each study was underpowered and if the results were pooled in a meta-analysis they would be
signi�cant. Many authors have described further unpalatable properties of vote counting (e.g., Koricheva
and Gurevitch 2013; Combs et al. 2009; Hedges and Olkin 1980)
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This section provides values for these measures and explores how they vary with
study or intervention characteristics. The data set contains 96 intervention-outcome
combinations, of which 57 are covered by at least three papers. The rest of this paper
will focus on this set of 57 intervention-outcomes, unless otherwise speci�ed.

4.1. Without Modeling Heterogeneity

Table 4 presents estimates of the likelihood of making a correct inference about the
sign of a similar study, the expected

p
MSE, �2 and I 2 for each intervention-outcome

combination. For reference, estimates of � are also provided, along with �=j�j and the
“typical” �i among studies in an intervention-outcome, using Higgins and Thompson’s
aggregation, s. Unstandardized values are used.

The median probability that the sign of a similar study would be correctly predicted
for these intervention-outcome combinations was 61%. Those intervention-outcome
combinations with the highest likelihood that a prediction about a similar study would
have the right sign had the lowest values of y�N =jy�N j. Recall that the probability of
making the correct inference about sign does not depend speci�cally on �=j�j, but it
does depend on both �2 and �, and the ratio can help in interpreting �2. The

p
MSE

may likewise be easiest to interpret relative to y�N . The median
p
MSE=jy�j for these

intervention-outcome combinations was 2.49. In other words, a prediction of a result
in a new setting is likely to be wrong by about 249% unless some of the variation can
be explained by a model.

Some of the lowest values of y�N =jy�N j are for conditional cash transfers and health-
related interventions such as the impact of bed nets on malaria. Among those with
the highest y�N =jy�N j are the �nancial interventions, i.e., micro�nance and �nancial
literacy training. For only a few intervention-outcome combinations can one make the
correct inference about the sign of a similar study at least 90% of the time: bed nets
reliably decrease malaria and CCTs improve enrollment rates. For micro�nance and
�nancial literacy, the probability of making the correct inference about the sign of
a similar study was only slightly better than 50% in most cases. That said, within a
given intervention, the probability of making the correct inference about the sign of
a similar study varied by outcome. For example, for conditional cash transfers, the
probability of making the correct inference about height-for-age was only 51%, likely
a function of the estimated average effect size being so small. It should also be noted
that those interventions covering a large number of outcomes would be more likely to
be represented at both the high and low end of the y�N =jy�N j spectrum just by chance.

Table 5 further summarizes these results by creating three bins for jy�N j and y�2N
such that a third of the intervention-outcomes fall into each bin and then reporting
the mean correct rate and

p
MSE for those intervention-outcomes that fall in each

of the cells of the resultant 3x3 table. This table shows that for intervention-outcome
combinations with a low jy�N j and medium or high y�2N , as well as those with a medium
jy�N j and high y�2N , the sign of another study can be predicted with just better than
a 50% chance. For reference, the cutoff thresholds for “low” and “high” jy�N j were
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0.057 and 0.167, and for y�2N these thresholds were 0.030 and 0.175, respectively.28

Intervention-outcomes with larger y�2N are likely to have larger jy�N j, but not all do.
The right hand side of the table provides the number of intervention-outcomes that fall
into each cell, suggesting that some of the summary statistics be treated with caution
due to the small number of intervention-outcomes involved. Still, the table may be
helpful in summarizing the disaggregated results.29

It should be noted that �2 depends on how narrowly an intervention-outcome is
de�ned. If outcomes were de�ned more broadly, for example, �2 would appear to
rise. By using narrowly de�ned outcomes, i.e., “strict” outcomes plus malaria and
anemia prevalence, these results err on the side of smaller estimated �2.30 Using “strict”
outcomes reduces the number of studies that can be included in the analysis, but it
minimizes �2 and yields better predictions than increasing the number of studies in
a cell for these data. As previously observed, the marginal bene�ts to prediction of
including an additional study fall precipitously over the �rst few studies. Also, it is
helpful to be able to distinguish between different potential sources of variation for
interpretability.

4.1.1. Robustness Checks. One may be concerned that low-quality papers are either
in�ating or depressing the degree of heterogeneity that is observed. There are many
ways to measure paper “quality”. Here, I consider two measures.31

First, I use the most widely-used quality assessment measure, the Jadad scale
(Jadad et al. 1996). The Jadad scale asks whether the study was randomized, double-
blind, and whether there was a description of withdrawals and dropouts. A paper
gets one point for having each of these characteristics. In addition, a point is
added if the method of randomization was appropriate, subtracted if the method
is inappropriate, and similarly added if the blinding method was appropriate and
subtracted if inappropriate. This results in a 0-5 point scale. Given that the kinds of

28. It is hard to convert these to values of y�N =jy�N j, given that the lower y�N within a cell, the lower
y�N =jy�N j, and the lower jy�N j within a cell, the higher y�N =jy�N j, but if one were at exactly the cutoff
threshold for “low” y�N and “low” jy�N j, this would correspond to a y�N =jy�N j value of 3.04; at the “high”
cutoff threshold for jy�N j, the “low” y�N cutoff corresponds to a equate to a y�N =jy�N j value of 1.04. At
the “high” y�N cutoff, the “low” and “high” cutoffs for jy�N j yield y�N =jy�N j values of 7.34 and 2.50,
respectively. Again, there will be great variation in y�N =jy�N j within a cell depending on the exact values
taken by y�N and jy�N j.

29. Again, it should be noted that studies on some interventions reported more outcomes than others. Due
to this fact and the possibility of unmodeled correlation between different outcomes, this table should not
be interpreted as providing low, medium and high values of jy�N j and y�2

N
for interventions.

30. As discussed, the intervention-outcome combination of bed net programs - malaria had the lowest
y�N =jy�N j and was associated with the highest probability of making the correct inference about the sign of
a similar study. Anemia prevalence also fared well along these measures. Hence, the choice to include these
outcomes does not appear to have biased the overall results to make studies appear more heterogeneous.

31. There are also other ways to measure paper quality. I would argue that what is most relevant is the
information provided to policymakers, and they often do not know which methods a study used, let alone
receive assessments of a paper’s quality.
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interventions being tested are not typically suited to blinding, I consider all papers
scoring at least a 3 to be of “high quality”.

In an alternative speci�cation, I also consider only those results from studies that
were RCTs. This is for two reasons. First, RCTs are the gold standard in impact
evaluation. Second, a companion paper �nds that RCTs exhibit the fewest signs of
speci�cation searching and publication bias (Vivalt 2019). It should be emphasized
that without building an explicit model for potential biases, I would have no way of
separating these biases from true, underlying heterogeneity in treatment effects. Thus,
looking at only studies that were RCTs and hence less subject to speci�cation searching
and publication bias provides a good robustness check.
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Table 4. Heterogeneity measures for treatment effects within intervention-outcomes.

Intervention Outcome Units 3P.Sign/ 2pMSE y�2
N

yI2
N

y�N
jy�N j

y�N ysN N

Conditional Cash Transfers Retention rate percentage points 0.65 0.01 0.000 0.86 1.51 -0.01 0.00 5
Conditional Cash Transfers Attendance rate percentage points 0.76 0.07 0.001 0.80 0.57 0.05 0.02 14
Conditional Cash Transfers Labor force participation percentage points 0.77 0.03 0.001 0.92 1.33 -0.02 0.01 18
Unconditional Cash Transfers Enrollment rate percentage points 0.87 0.03 0.001 0.90 0.86 0.04 0.01 13
Conditional Cash Transfers Enrollment rate percentage points 0.95 0.03 0.001 0.96 0.60 0.05 0.01 36
Financial Literacy Has savings percentage points 0.64 0.05 0.001 0.61 1.48 0.02 0.03 4
Micronutrients Birthweight kg 0.79 0.05 0.002 0.89 1.17 0.04 0.02 7
Rural Electri�cation Enrollment rate percentage points 0.79 0.09 0.002 0.65 0.69 0.07 0.04 3
Deworming Hemoglobin g/dL 0.54 0.08 0.004 0.56 3.71 0.02 0.06 14
Micronutrients Weight-for-height standard deviations 0.70 0.07 0.005 0.77 1.80 0.04 0.04 26
Micronutrients Weight-for-age standard deviations 0.72 0.09 0.009 0.89 1.76 0.05 0.03 31
Micronutrients Mid-upper arm circumference cm 0.73 0.10 0.009 0.82 1.55 0.06 0.04 17
Micronutrients Height-for-age standard deviations 0.67 0.11 0.011 0.90 2.21 0.05 0.03 33
Micronutrients Diarrhea incidence log risk ratio 0.80 0.14 0.015 0.82 1.05 -0.11 0.06 7
Financial Literacy Has taken loan percentage points 0.50 0.15 0.016 0.93 10.14 0.01 0.03 4
HIV/AIDS Education Used contraceptives percentage points 0.61 0.18 0.023 0.93 1.93 0.08 0.04 4
Conditional Cash Transfers Probability unpaid work percentage points 0.56 0.18 0.024 0.98 3.03 -0.05 0.02 5
Conditional Cash Transfers Height-for-age standard deviations 0.51 0.21 0.029 0.84 18.90 -0.01 0.07 7
Bed Nets Malaria log risk ratio 0.98 0.20 0.030 0.69 0.46 -0.38 0.12 10
SMS Reminders Appointment attendance rate log risk ratio 0.78 0.22 0.031 0.92 1.02 0.17 0.05 3
Micronutrients Test scores standard deviations 0.65 0.20 0.034 0.99 2.16 0.09 0.02 9
Conditional Cash Transfers Pregnancy rate percentage points 0.52 0.24 0.038 0.98 6.51 -0.03 0.03 3
Micronutrients Weight kg 0.76 0.21 0.041 0.96 1.39 0.15 0.04 31
Contract Teachers Test scores standard deviations 0.71 0.29 0.054 0.95 1.23 0.19 0.05 3
Conditional Cash Transfers Gave birth at healthcare facility percentage points 0.52 0.29 0.055 0.94 4.36 0.05 0.06 3
Performance Pay Test scores standard deviations 0.60 0.30 0.059 0.98 2.03 0.12 0.03 3
Conditional Cash Transfers Skilled attendant at delivery percentage points 0.57 0.31 0.062 0.90 2.47 0.10 0.08 3
Conditional Cash Transfers Test scores standard deviations 0.54 0.31 0.069 0.98 3.11 0.08 0.03 5
Deworming Weight-for-height standard deviations 0.54 0.29 0.075 0.98 4.59 0.06 0.04 11
Micronutrients Body mass index kg/m^2 0.75 0.31 0.077 0.99 1.31 0.21 0.03 5
Micronutrients Mortality log risk ratio 0.52 0.33 0.083 0.50 6.32 -0.05 0.29 11
Scholarships Enrollment rate percentage points 0.55 0.40 0.111 1.00 2.95 0.11 0.02 3
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Deworming Height-for-age standard deviations 0.65 0.38 0.132 1.00 2.25 0.16 0.02 14
Deworming Weight-for-age standard deviations 0.61 0.40 0.145 1.00 2.74 0.14 0.02 12
Micronutrients Perinatal death log risk ratio 0.56 0.45 0.151 0.69 3.18 0.12 0.26 6
Micronutrients Diarrhea prevalence log risk ratio 0.65 0.45 0.156 0.90 1.77 -0.22 0.13 6
School Meals Test scores standard deviations 0.50 0.54 0.170 0.98 8.91 0.05 0.05 3
Micronutrients Prevalence of anemia log risk ratio 0.89 0.44 0.175 0.87 0.80 -0.52 0.16 13
Deworming Mid-upper arm circumference cm 0.53 0.46 0.176 0.99 4.93 0.09 0.04 7
Deworming Weight kg 0.59 0.44 0.182 0.99 3.33 0.13 0.05 17
School Meals Enrollment rate percentage points 0.50 0.66 0.216 0.90 11.57 0.04 0.16 3
Micronutrients Stunted log risk ratio 0.51 0.60 0.228 0.89 6.70 -0.07 0.17 3
Deworming Height cm 0.53 0.51 0.229 0.95 5.41 0.09 0.11 16
Micronutrients Hemoglobin g/dL 0.72 0.49 0.235 0.99 1.70 0.29 0.04 37
Micronutrients Height cm 0.64 0.50 0.244 0.96 2.81 0.18 0.10 29
Water Treatment Diarrhea prevalence log rate ratio 0.77 0.57 0.279 0.96 1.29 -0.41 0.10 9
Water Treatment Diarrhea incidence log rate ratio 0.75 1.02 0.791 0.96 1.28 -0.69 0.17 5
Conditional Cash Transfers Unpaid labor hours hours/week 0.81 1.17 0.993 0.83 0.98 -1.02 0.45 5
Micronutrients Stillbirth log risk ratio 0.51 1.19 1.023 0.85 8.10 0.12 0.42 4
Water Treatment Dysentery incidence log rate ratio 0.59 2.22 3.305 0.97 2.08 -0.88 0.31 3
Conditional Cash Transfers Labor hours hours/week 0.73 2.60 5.491 0.97 1.44 -1.63 0.42 7
Rural Electri�cation Study time hours/day 0.57 3.89 9.991 0.99 2.35 1.34 0.32 3
Financial Literacy Savings current US$ 0.56 56.84 1100.337 0.92 1.79 18.58 9.71 5
Micro�nance Total income current US$ 0.59 65.55 2806.259 0.96 2.14 24.74 10.83 5
Micro�nance Pro�ts current US$ 0.50 161.64 18134.689 0.96 22.66 5.94 28.31 5
Micro�nance Savings current US$ 0.50 211.67 29058.289 1.00 8.67 19.65 6.02 3
Micro�nance Assets current US$ 0.51 330.21 76265.430 0.99 5.40 51.17 28.59 4

Notes: 3P.Sign/ is the average estimated probability of making the correct inference about the sign of a particular true effect, �j , given all data in that

intervention-outcome combination, and 2pMSE represents the average estimated square root of the mean squared error of that prediction. y�2
N

, yI2
N

, y�N =jy�N j and
y�N likewise present the average estimate for each parameter. ysN estimates a common sampling error for each intervention-outcome using Higgins and Thompson’s
approximation. It is important in estimating yI2

N
and it provides a way to summarize the �i within an intervention-outcome combination, given they vary by study.

However, the individual study-speci�c estimates of the sampling variance, �2
i

, were used to generate the estimates of � and � and hence the other columns in the table.
Each measure is calculated separately by intervention-outcome combination, without pooling across intervention-outcomes. Unstandardized values are used throughout.
10,000 simulations are run to calculate the probability of making the correct inference about the sign of �j and the MSE for each intervention-outcome combination.
Wherever yI2

N
appears equal to 1.00, this is the result of rounding. This table reports results for all 57 intervention-outcome combinations covered by at least three

studies.
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Table 5. Summary of generalizability measures by heterogeneity measures.

2P.Sign/ 2pMSE N

y�2
N

y�2
N

y�2
N

jy�N j Low Medium High Low Medium High Low Medium High

Low 0.688 0.515 0.500 0.08 0.35 0.66 14 4 1
Medium 0.733 0.603 0.534 0.13 0.33 0.64 4 10 5
High 0.980 0.756 0.634 0.20 0.34 64.49 1 5 13

Notes: This table summarizes the information provided in Table 4 by splitting the
intervention-outcome combinations into three equal-sized groups according to jy�N j

and y�2
N

and then calculating the average value of 2P.Sign/ and 2pMSE for the
intervention-outcome combinations that fall in each cell. Note that since jy�N j

tends to increase with y�2
N

, there are relatively few observations in some cells.

Table 6 provides summary measures of heterogeneity using the data that meet
these two quality criteria.32 The summary heterogeneity measures are not substantially
different using these data. The common sampling error that is estimated, ysN , appears
slightly lower in magnitude for the 50th and 75th percentile for these studies. However,
a t-test fails to reject that the mean of ysN among either group of results meeting
these quality criteria is lower than the mean of ysN among all results, and this is
true even when restricting attention to the half of each sample with the highest ysN .
These differences are minute enough to not translate into improvements in 3P.Sign/
or 2p

MSE.

4.1.2. Model Checking. It is good practice to check the �t of the model using
posterior predictive checks. These checks compare the data with the posterior
distribution, under the intuition that for a model that �ts the data well, the data should
look similar to draws from the posterior distribution. To conduct a posterior predictive
check, one takes some function of the data that is of interest and generates a test
statistic, T , for that function using the data and the simulated posterior distribution.
One then computes the probability that the test statistic in the posterior distribution is
larger than that in the observed data. This de�nes the Bayesian p-value:

p D P.T .Y rep; �/ � T .Y; �/jY / (21)

where Y rep can be thought of as the data that the model would predict a replication of
all the studies would �nd, � represents all the parameters in the model, including the
hyperparameters, and Y represents the observed data.

These tests have a nuanced interpretation, and it is not the case that if a model
fails to �t the data in some way it is necessarily a bad model. In particular, in the
context of this paper, one might think that outliers in the original data that were based
on small sample sizes are not great estimates of their respective true effect sizes �i

32. Full tables are provided in Tables B.2-B.3 in Online Appendix B.
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Table 6. Heterogeneity measures by study quality.

2P.Sign/ 2pMSE y�2
N

yI2
N

y�N
jy�N j

y�N ysN N
All studies
25th percentile 0.54 0.15 0.016 0.87 1.33 -0.01 0.03 4
50th percentile 0.61 0.31 0.075 0.94 2.14 0.05 0.05 6
75th percentile 0.75 0.54 0.229 0.98 4.36 0.13 0.16 13

RCTs
25th percentile 0.55 0.11 0.011 0.88 1.30 -0.04 0.03 4
50th percentile 0.65 0.33 0.075 0.95 1.97 0.05 0.05 7
75th percentile 0.74 0.50 0.224 0.98 3.58 0.13 0.12 14

Higher-quality studies
25th percentile 0.55 0.14 0.015 0.89 1.47 -0.07 0.03 4
50th percentile 0.65 0.37 0.087 0.95 1.86 0.05 0.04 7
75th percentile 0.72 0.52 0.226 0.98 3.48 0.14 0.12 14

Notes: This table shows quantiles of the heterogeneity measures for different subgroups of
studies: all studies, RCTs, and those studies considered “higher-quality” using the Jadad scale.

As in Table 4, 2P.Sign/ is the average estimated probability of making the correct infer-
ence about the sign of a particular true effect, �j , given all data in that intervention-outcome

combination, and 2pMSE represents the average estimated square root of the mean squared
error of that prediction. y�2

N
, yI2
N

, y�N =jy�N j and y�N likewise present the average esti-
mate for each parameter, and ysN estimates a common sampling error for each intervention-
outcome using Higgins and Thompson’s approximation. Each measure is calculated separately
by intervention-outcome combination, without pooling across intervention-outcomes. Unstandard-
ized values are used throughout. 10,000 simulations are run to calculate the probability of
making the correct inference about the sign of �j and the MSE for each intervention-outcome
combination. Wherever yI2

N
appears equal to 1.00, this is the result of rounding. This table

reports results for those intervention-outcome combinations covered by at least three studies.

but should rightly be thought to be closer to the mean within an intervention-outcome
combination. In that case, some differences between the original data and the posterior
distribution would be expected and even desired.

There are many test statistics that could be used to check whether the top-
level assumption of normality is reasonable in my data. Following Bandiera et al.
(2016), I check whether the center part of my data and the posteriors appear equally
symmetrically distributed. Often a fairly large interval of the data is used for this kind of
analysis, but some of my intervention-outcome combinations are small and it makes
little sense to talk about a 10th percentile, for example, of an intervention-outcome
combination with three studies. I thus start by considering the 25-75th percentile for
all intervention-outcome combinations. For those intervention-outcomes with at least
nine studies, I also consider the 10-90th percentile, and for those with at least 19
studies I additionally consider the 5-95th percentile. Taking the example of a test of
symmetry over the 10-90th percentile in an intervention-outcome with nine studies,
the test statistic would be written as follows:

T .Y; �/ D jY.9/ � �j � jY.1/ � �j (22)
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where the ninth and �rst order statistics represent the 90th and 10th percentiles of
the distribution and � is the best guess of any data point in Y in a random-effects
model. T .Y; �/ would be distributed around 0 if symmetric. The exact order statistic
used depends on the intervention-outcome, given the different number of studies they
contain and the different percentiles tested. T .Y rep; �/ would similarly be written as:

T .Y rep; �/ D jY
rep
.9/
� �j � jY

rep
.1/
� �j (23)

To calculate the p-value in Equation 20, I draw 1,000 values of � and �2 from their
posterior distributions and then draw Y rep, using �2i drawn from the set of observed
�2i .

Table B.4 presents results. For none of the 57 intervention-outcome combinations
are the observed data and the simulated replication data signi�cantly different
from each other in the 25-75th interval.33 For one of the 22 intervention-outcome
combinations with at least nine studies, the observed data and simulated replication
data are signi�cantly different in the 10-90th interval. For two of the seven intervention-
outcome combinations with at least 19 studies, the observed data and simulated
replication data are signi�cantly different in the 5-95th interval. The larger the number
of studies, the more likely the tails are to be skewed. The one intervention-outcome
which failed the 10-90th interval test was the effect of CCTs on enrollment rates, an
intervention-outcome with among the largest number of studies. This intervention-
outcome combination also failed the test using the 5-95th interval, along with the
effect of micronutrients on height. It should not be surprising that intervention-outcome
combinations with a larger number of studies should fail these tests more often as it
is easier to detect a misspeci�ed model with more data points. Overall, the tests are
encouraging, though the model may �t less well in the extreme tails.

4.2. Modeling Heterogeneity

If the observed heterogeneity in outcomes can be systematically modeled, one
could make better predictions. I �rst look across different intervention-outcome
combinations to examine whether effect sizes, y�2 or yI 2 are correlated with any study
or intervention characteristics. I then turn to look within a few speci�c intervention-
outcome combinations and build a mixed model to try to explain the variance.

4.2.1. Across Intervention-Outcomes. Table 7 presents the results of a simple OLS
regression of effect sizes on study characteristics, using standardized values.34 Data for

33. The relevant thresholds are p < 0:025 and p > 0:975, given that for these tests a very high p-
value also indicates a poor �t; to gauge �t one should test not just whether T.Y rep; �/� T.Y; �/ but also
whether T.Y rep; �/ � T.Y; �/.

34. Variables one might wish to include in this kind of regression and for which the data are not too
sparse include: number of authors; publication year; publication code i.e., published or unpublished and
type of journal; organization code; method; whether the study was blinded; country (aggregated here to
region following the World Bank’s geographic divisions to avoid including too many dummy variables);
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10 of the 57 intervention-outcomes could not be standardized and hence are excluded
from this table.35

I �nd that studies based on a smaller number of observations have greater effect
sizes. This is what one would expect if speci�cation searching were easier in small data
sets. This pattern of results would also arise if power calculations drove researchers to
only proceed with studies with small sample sizes if they believed the program would
result in a large effect size, or if larger studies were less well-targeted. Interestingly,
government-implemented programs have lower effect sizes even controlling for sample
size, compared to programs implemented by the private sector. Studies in the Middle
East / North Africa (MENA) region may appear to perform slightly better than those
in Sub-Saharan Africa (the excluded region category), but very few studies were
conducted in MENA countries, so not much weight should be put on this. RCTs do
not exhibit signi�cantly different results than quasi-experimental studies within an
intervention-outcome combination.

These regressions include intervention-outcome �xed effects so as to better isolate
the variation in effect sizes that can be explained by study characteristics even across
intervention-outcome combinations, and standard errors are also clustered at this level.
Some systematic differences in effect sizes across interventions or across outcomes is
to be expected, and without including �xed effects these differences could obscure the
relationship between the effect sizes and study characteristics. For example, many of
the largest studies were on conditional cash transfer programs, which were also often
government-implemented. Without controlling for intervention, it would be unclear
whether the observed negative relationship between sample size and effect size was just
due to conditional cash transfer programs having small effect sizes. Effect sizes could
additionally differ by outcome, even when standardized values are used, since some
outcome variables may tend to have larger standard deviations than others. Further, it
may be easier for some interventions to have an effect on a particular outcome, so that
there is some variation in effect size by intervention-outcome. I include intervention-
outcome �xed effects to abstract from any such issues in this table.

However, whether y�2N or yI 2N varies systematically with any intervention-, outcome-
, or intervention-outcome-level characteristics is also of interest. It is harder to
analyze differences in y�2N or yI 2N because there are not many intervention-outcome

and whether attrition was reported. I believe these are the most relevant variables, as the other study
characteristics gathered were simply paper or result indicators, seemingly unrelated, or quite noisy (for
example, the variable “number of months after intervention” was collected to capture the duration of time
that had passed between the beginning of the intervention and the midline or endline data collection,
however, this was unclear in many papers). The coding manual is available as an appendix for a list of
other potential covariates.

35. These were: the impact of conditional cash transfers on birth at a healthcare facility; the impact of
conditional cash transfers on labor hours; the impact of conditional cash transfers on pregnancy rates; the
impact of conditional cash transfers on retention rates; the impact of conditional cash transfers on having
a skilled attendant at delivery; the impact of �nancial literacy on having savings; the impact of �nancial
literacy on having taken a loan; the impact of water treatment on diarrhea incidence; the impact of water
treatment on diarrhea prevalence; and the impact of water treatment on dysentery incidence.
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combinations (and hence observations of y�2N or yI 2N ) that can be used in a regression,
especially when using standardized values. Recall that data for 10 intervention-
outcomes were unable to be standardized; this leaves 47 intervention-outcome
combinations to use in a regression. Still, using k to denote intervention-outcome
combinations, I can run regressions of the form:

y�2N D ˛C ˇXk C "k (24)

yI 2N D ˛
0
C ˇ0X 0k C "

0
k (25)

whereXk andX 0
k

represent explanatory variables that vary at the intervention-outcome
level.36 To form Xk , I use the within-intervention-outcome variance of each of the
explanatory variables in Table 7, in turn. The intuition is that if there is a strong
relationship between study characteristics and effect size, the within-intervention-
outcome variance in those characteristics might help to explain the variance in
effect sizes. In place of the within-intervention-outcome variance of each of a set
of regional dummy variables, however, I use the number of countries represented in
an intervention-outcome, controlling for the number of studies in that intervention-
outcome. This is because this measure might be easier to interpret and minimizes the
number of explanatory variables. In addition, it could be that context varies immensely
between countries, so that countries may be a better unit for analysis than regions.37

X 0
k

is constructed as the mean value within the intervention-outcome combination
of each of the explanatory variables considered in Table 7 rather than the within-
intervention-outcome variance of these variables. The mean might be more appropriate
for these regressions since yI 2N captures a proportion of variance rather than a variance,
but I show results using the within-intervention-outcome variance in an alternative
speci�cation (Table B.5 in Online Appendix B). In my preferred speci�cation, I also
winsorize one outlier for y�2N .38 Results without winsorizing this outlier are included in
Table B.5 and are not very different.

Table 8 shows that the regressions of y�2N on the aforementioned explanatory
variables are mostly null. It is possible that this is a result of the extra variation
introduced by not including intervention or outcome �xed effects. The within-
intervention-outcome variance in the sample size appears to be negatively correlated
with y�2N , but this is likely to be an artifact of CCTs having the greatest variance
in sample size and also having relatively low y�2N . yI 2N is positively associated with
the mean sample size within an intervention-outcome combination. This is not a

36. y�2
N

and yI2
N

naturally vary at the intervention-outcome level; they could equally well be subscripted

as y�2
kN

and yI2
kN

.

37. Country dummies were not included in Table 7 because they would have been likely to result in
over�tting.

38. One value of y�2
N

is 6.6 standard deviations away from the mean and several times higher than the
next largest value, so it may make sense to treat as an outlier. This y�2

N
was estimated for the impact of rural

electri�cation programs on study time and seems to be a result of studies �nding impacts ranging from a
few minutes to several hours per week.
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Table 7. Regression of effect size on study characteristics.

(1) (2) (3) (4) (5)

Number of -0.013** -0.013** -0.011**
observations (100,000s) (0.01) (0.01) (0.00)
Government-implemented -0.081*** -0.073***

(0.02) (0.03)
Academic/NGO-implemented -0.018 -0.020

(0.01) (0.01)
RCT 0.021

(0.02)
East Asia 0.002

(0.03)
Latin America -0.003

(0.03)
Middle East/North 0.193**
Africa (0.08)
South Asia 0.021

(0.04)

Observations 528 597 611 528 521
R2 0.19 0.22 0.21 0.21 0.19

Notes: Each column reports the results of regressing the standardized effect size on dif-
ferent explanatory variables, dropping one outlier with an effect size greater than 2. This
table uses those intervention-outcomes covered by at least 2 papers; readers will recall the
maximum number of observations for this data set was 612, before dropping the one out-
lier. Different columns contain different numbers of observations because not all studies
reported each explanatory variable. Projects implemented by the private sector comprise the
excluded implementer group, and the excluded region is Sub-Saharan Africa. Intervention-
outcome �xed effects are included, with standard errors clustered by intervention-outcome.

surprise, because increases in sample size reduce the sampling variance and so
should mechanically reduce yI 2N , independent of the relationship of sample size to
y�2N . In the alternative speci�cation in Table B.5 that uses the within-intervention-
outcome variance rather than the mean as an explanatory variable, the academic/NGO-
implemented variable is also signi�cantly associated with yI 2N , but this could be due to
those intervention-outcomes with high variance in implementation containing more
government-implemented programs and government-implemented programs tending
to have larger sample sizes, driving down the sampling variance and hence driving up
yI 2N .

The explanatory variables used in Table 8 are not the only ones that might have a
theoretical reason to be associated with y�2N . A stronger relationship might hold between
y�2N and how direct an impact an intervention is likely to have. Those intervention-
outcome combinations for which the interventions act more directly on the targeted
outcomes may be expected to have smaller y�2N . This hypothesis has frequently been
made in the literature on “theories of change” or “causal chains” e.g., Williams (2018).
However, it is dif�cult to operationalize this intuition. I focus on two examples for
which I think there is theoretical reason to believe the effect of the intervention on
certain outcomes is particularly direct: the effect of health interventions and the effect
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Table 8. Regression of y�2
N

and yI2
N

on study characteristics.

y�2
N

(1) (2) (3) (4) (5) (6)

Var(Sample Size) -0.045** -0.026
(0.02) (0.06)

Var(Government-implemented) 0.118 0.651
(0.40) (0.80)

Var(Academic/NGO-implemented) 0.019 -0.685
(0.36) (0.44)

Var(RCT) -0.268 -0.144
(0.40) (0.58)

Number of Countries -0.033 -0.019
(0.03) (0.04)

Number of Studies 0.006 0.001
(0.01) (0.02)

Observations 41 47 47 47 47 41
R2 0.01 0.00 0.00 0.01 0.11 0.12

yI2
N

(7) (8) (9) (10) (11) (12)

Mean(Sample Size) 0.094* 0.139**
(0.05) (0.06)

Mean(Government-implemented) 0.026 -0.154
(0.06) (0.11)

Mean(Academic/NGO-implemented) -0.056 -0.057
(0.06) (0.14)

Mean(RCT) -0.066 -0.073
(0.09) (0.14)

Number of Countries -0.008 -0.017
(0.01) (0.02)

Number of Studies 0.004 0.008
(0.01) (0.01)

Observations 41 47 47 47 47 41
R2 0.02 0.00 0.02 0.01 0.00 0.06

Notes: This table shows the results of regressions of y�2
N

and yI2
N

on intervention-outcome-
level summary statistics of the study characteristics considered in Table 7 (i.e., estimat-
ing y�2

N
D ˛ C ˇXk C "k and yI2

N
D ˛0 C ˇ0X 0

k
C "0

k
where Xk and X 0

k
represent

intervention-outcome-level summary statistics such as the variance of the sample size of stud-
ies within an intervention-outcome). One outlier value of y�2

N
6.6 standard deviations away

from the mean is winsorized, as described in the text. Robust standard errors are used.

of interventions that provide an economic incentive that is conditional. It is frequently
hypothesized that results from social science interventions vary more than results for
interventions that produce effects through biological channels. From an economic
standpoint, conditional programs that have a direct causal mechanism through which
they are posited to work could also have more generalizable results.

To test these hypotheses, I regress y�2N and yI 2N on dummy variables indicating
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whether the intervention in the intervention-outcome combination in question is a
health intervention or a conditional intervention. These regressions take the same
form as Equations 24 and 25, but now k is used to denote interventions rather than
intervention-outcomes and Xk and X 0

k
each indicate whether the intervention is a

health or conditional intervention, in turn.
I label as health interventions deworming drugs, micronutrient supplementation

programs and bed nets programs. HIV/AIDS education programs might also be
thought of as health interventions, though they are based on behavior change rather
than on direct provision of drugs or supplements, and school meals programs
also are somewhat health-related. In an alternative speci�cation, I include these
latter two interventions as health interventions. I classify conditional cash transfer
programs (which generally provide bene�ts conditional on enrollment in school) and
performance pay programs (which provide bene�ts conditional on test scores) as
conditional programs. One may also consider scholarships programs to be implicitly
conditional given that one needs to continue to attend school in order to receive
the scholarship. I include scholarships as a conditional intervention in an alternative
speci�cation.

The main regression results are reported in Table 9, while Appendix Table B.6
provides results without winsorizing one value of y�2N and Appendix Table B.7
provides results for the regressions using the alternative de�nitions of health and
conditional interventions. There is some suggestive evidence that health interventions
and conditional economic interventions have lower y�2N . However, these results are
sensitive to whether one winsorizes an extreme outlier for y�2N and whether the
alternative de�nitions are used. The point estimates all have the expected sign: health
interventions and conditional economic interventions have smaller y�2N . It remains
possible that outcomes with lower standardized y�2N are simply overrepresented in the
outcomes studied by these interventions. No signi�cant relationship is observed with
yI 2N .39

These tables illustrate that it is not easy to make quick judgments about which
types of interventions generalize. Health interventions have long been suspected to be
distinctly better at obtaining generalizable results than interventions that act through
social or behavioral pathways. I �nd some evidence of this, but the fact that the
relationship is not stronger suggests that the story is not so straightforward. One
possible explanation is that the results of health interventions can depend greatly on
the baseline prevalence of the disease they were intended to treat, and these regressions
do not control for that. This motivates the next stage of analysis: modeling within-
intervention-outcome variation.

4.2.2. Within Intervention-Outcomes. While seeking to explain heterogeneity across
intervention-outcomes has the advantage of enabling a larger sample of studies to be

39. It can be observed that the sign of the relationship �ips for conditional programs. This could be a
function of the CCTs captured by this variable tending to have large sample sizes, which would increase
yI2
N

.
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Table 9. Regression of y�2
N

and yI2
N

on intervention characteristics.

y�2
N

yI2
N

(1) (2) (3) (4) (5) (6)

Health -0.114 -0.210* -0.074 -0.086
(0.09) (0.12) (0.05) (0.05)

Conditional -0.128** -0.262** 0.023 -0.032
(0.05) (0.12) (0.05) (0.05)

Observations 47 47 47 47 47 47
R2 0.04 0.03 0.13 0.04 0.00 0.05

Notes: This table shows the results of regressions of y�2
N

and yI2
N

on intervention-level
characteristics (i.e., estimating y�2

N
D ˛ C ˇXk C "k and yI2

N
D ˛0 C ˇ0X 0

k
C "0

k
where Xk and X 0

k
now represent the intervention-level characteristics of whether the

intervention was a health intervention and whether it provided economic incentives
that were conditional on certain actions). As before, one value of y�2

N
6.6 standard

deviations away from the mean is winsorized. Robust standard errors are used.

used, more variation might be explained if I modeled heterogeneity within particular
intervention-outcome combinations. To this end, I focus on those intervention-outcome
combinations covered by over 10 studies. I exclude micronutrient programs so
as to focus on those interventions more often studied by economists. To explain
heterogeneity in treatment effects across studies within an intervention-outcome, I
leverage both the potential explanatory variables that are shared in common across
all the intervention-outcome combinations, used in the previous regressions, and the
variables that were coded that are intervention-speci�c. Excluding micronutrients, only
CCTs, UCTs, and deworming programs have over 10 studies on a particular outcome
in my data. Table 10 lists the intervention-speci�c variables that were coded for each
of these interventions.40

Some of the intervention-speci�c variables relate to the sample (e.g., age, gender).
Variables relating to the sample often varied within a study and different values
were reported for different subgroups. To generate a study-level aggregate value,
the same process was followed as was used to create a single treatment effect per
intervention-outcome-paper, creating a weighted mean. If a paper reported aggregate
values alongside results for subgroups, the aggregate value was used, else the smallest
set of non-overlapping subgroups were aggregated. For example, if results were
reported separately for girls and boys and also for three different age groups, the results
for girls and boys would be aggregated.

With these variables, I can estimate decreases in �2 and I 2 were a mixed model to
be used. With many possible explanatory variables and a small number of observations,
I must select among the explanatory variables. I choose the single explanatory variable

40. In addition to these variables, I also consider the possibility that there is an interaction between the
drug provided and the dosage, since different drugs have different strengths and are typically given in
different amounts.
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Table 10. List of intervention-speci�c variables.

CCTs:
Minimum transfer per child conditional on meeting education requirements
Maximum transfer per child conditional on meeting education requirements
Minimum transfer per household conditional on meeting education requirements
Maximum transfer per household conditional on meeting education requirements
Min transfer per household conditional on meeting non-education-related requirements
Max transfer per household conditional on meeting non-education-related requirements
Whether program eligibility was restricted to poor households
Whether enrollment at school was a condition
Whether attendance at school was a condition
What the threshold attendance level was for those conditional on school attendance
Whether there were any health-related conditions, such as health checks
Baseline enrollment rates
Whether the sample comprised only those enrolled at baseline, not enrolled, or a mix
Whether the study was done in a rural and/or urban setting
Results for other programs in the same region
The age range of the sample under consideration
The gender of the sample under consideration

UCTs:
The minimum transfer amount per child
The maximum transfer amount per child
The minimum transfer amount per household
The maximum transfer amount per household
Whether program eligibility was restricted to poor households
Baseline enrollment rates
Whether the sample comprised only those enrolled at baseline, not enrolled, or a mix
Whether the study was done in a rural and/or urban setting
Results for other programs in the same region
The age range of the sample under consideration
The gender of the sample under consideration

Deworming:
Indicators for albendazole, mebendazole, levamisole, pyrantel pamoate, or multiple drugs
How many rounds of treatment there were
How many months elapsed between each round
The dosage of each drug provided in one round
The baseline prevalence of each of Ascaris lumbricoides, Trichuris trichiura, and hookworm

Notes In some cases, only endline enrollment or prevalence rates are reported. The baseline rates
variables are therefore constructed by using baseline rates for both the treatment and control group
where they are available, followed by the baseline rate for the control group; the baseline rate for
the treatment group; the endline rate for the control group; the endline rate for the treatment and
control group; and the endline rate for the treatment group. Regions include Latin America, Africa,
the Middle East and North Africa, East Asia, and South Asia, following the classi�cation of World
Bank (2015).

which maximizes the R2 when running an OLS regression of the treatment effect
Yi on the explanatory variable Xi (Yi D ˛ C ˇXi C "i ) run separately within each
intervention-outcome. The “residual” y�2, y�2R, is then calculated using the mixed model
described by Equation 15, with the selected explanatory variable as its Xi .

Results are presented in Table 11. On average, y�2R is reduced from y�2 by about
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20%. The median is a bit lower at 10%, as there are several intervention-outcomes for
which y�2 does not appreciably decrease, and y�2R and yI 2R actually minutely increase for
two intervention-outcome combinations, re�ecting simulation noise. The intervention-
outcome combinations for which y�2N decreased the most were the impact of deworming
on weight-for-height (73%), the impact of deworming on weight (68%), and the impact
of deworming on height-for-age (25%). It should be noted that while I restricted
attention to those intervention-outcome combinations with over 10 studies, many of
the papers failed to report all the explanatory variables, reducing the effective number
of observations. There is thus a risk that some of the largest decreases are the result of
over�tting.

Given the number of studies within an intervention-outcome combination, it
is infeasible to build models with more explanatory variables. Further gains may,
however, be possible by leveraging micro-data when they are available. To provide
support for this intuition, I turn to consider an intervention-outcome combination
covered by a particularly large number of studies: the effect of conditional cash
transfers on enrollment rates. While up to this point the paper has used data that either
were originally reported as an aggregate point estimate or data from combining the
minimum number of non-overlapping subgroups, here I turn to consider the maximal
set of non-overlapping subgroups to increase the sample size and run OLS regressions
of the unstandardized treatment effect on these sample characteristics.41 If Yis is the
estimated effect of a conditional cash transfer program on enrollment rates in subgroup
s of study i , these regressions are of the form: Yis D ˛CˇXis C "is . These subgroups
never overlap, so no results are double-counted, but results can be correlated across
subgroups within a study, so I cluster standard errors by study. Since most variables
describing a paper (such as whether it was an RCT) do not vary within the paper,
I consider only those variables that describe sample characteristics as explanatory
variables in these regressions.

Results are presented in Table 12. The baseline enrollment rates show the strongest
relationship to the treatment effect, as re�ected in theR2 of these regressions and their
signi�cance levels. It seems easier for there to be large treatment effects when the
baseline level of the outcome variable is low. Some papers pay particular attention to
those children that were not enrolled at baseline or that were enrolled at baseline. These
are coded as having a 0% or 100% enrollment rate at baseline, respectively, in addition
to being represented by two dummy variables. CCT programs seem to have larger
effects on enrollment rates for those not enrolled at baseline, beyond the linear trend
(Column 2). Studies done in urban areas tend to �nd smaller treatment effects than
studies done in rural or mixed urban/rural areas. There is no signi�cant difference in
treatment effects by gender or age.42 Finally, for each observation I calculate the mean
treatment effect in the same region, excluding results from the program in question.

41. For example, if I have results for girls and boys reported separately, as well as for three different age
groups, I will now use the results for the three different age groups.

42. Shown here: minimum sample age. Results for the maximum or mean age variables available upon
request.
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Treatment effects do appear correlated across different programs in the same region.
If data that are disaggregated even just to the subgroup level can obtain a much

improved �t, it would suggest that models leveraging micro-data would yield even
better results.43

43. I do not run a mixed model using the signi�cant characteristics as explanatory variables because
doing so would arti�cially increase the estimated �2 for the intervention-outcome. For example, splitting
the papers’ samples into results by age group would generally serve to increase �2 relative to using the
aggregate result. Even if that estimated �2 could then be reduced by the mixed model, it is not clear what
the implication would be for the perhaps more standard scenario in which one wants to compare aggregate
point estimates across papers.
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Table 12. Regression of projects’ results on characteristics (CCTs on enrollment rates).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Enrollment Rates -0.205*** -0.102*** -0.090*** -0.081**
(0.05) (0.03) (0.03) (0.03)

Enrolled at Baseline 0.001 -0.002
(0.02) (0.02)

Not Enrolled at 0.195*** 0.199*** 0.189***
Baseline (0.03) (0.02) (0.04)
Number of -0.008 0.003
Observations (100,000s) (0.00) (0.00)
Rural 0.038** 0.013 0.032

(0.02) (0.01) (0.02)
Urban -0.049*** -0.018 -0.017

(0.01) (0.01) (0.02)
Girls 0.001 0.014

(0.01) (0.01)
Boys -0.020 -0.004

(0.02) (0.02)
Minimum Sample Age 0.001 0.002

(0.00) (0.00)
Mean Regional Result 1.000** 0.263

(0.47) (0.36)

Observations 249 249 145 270 270 270 270 244 270 249 119
R2 0.32 0.44 0.00 0.05 0.03 0.00 0.01 0.00 0.02 0.45 0.50

Notes: Each column regresses the impact of conditional cash transfer programs on enrollment rates (i.e., the subgroup-level point estimates Yis) on different
explanatory variables. Multiple results for different subgroups may be reported for the same paper. The data on which this table is based include multiple results from
the same paper for different subgroups that are non-overlapping (e.g., boys and girls, groups with different age ranges, or different geographical areas). Standard errors
are clustered by paper. Not every paper reports every explanatory variable, so different columns are based on different numbers of observations. “Enrolled at Baseline” is
a dummy variable indicating whether the entire sample on which a result was reported was enrolled in school at baseline; “Not Enrolled at Baseline” is a dummy
variable indicating whether the entire sample was not enrolled in school at baseline. These correspond to 100% and 0% enrollment rates for the sample under
consideration, but it makes sense to consider them separately due to selection issues.
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5. Discussion

Why should we care about the dispersion of results across studies? Information on the
context, intervention, implementation and study quality could decrease the amount
of unexplained heterogeneity and so improve inference. However, the information
provided in academic papers is naturally limited. I �nd that sampling variance
accounts for only 6% of the total variance in estimated treatment effects for the
median intervention-outcome combination in my data. For 10 intervention-outcome
combinations in my data with a large number of studies, I �nd about 20% of the
remaining variance could be explained using a single best-�tting explanatory variable.
However, this statistic obscures a lot of heterogeneity, with the median decrease being
about 10%. These results, though perhaps better than many might expect, emphasize
the importance of sharing micro-data to build even better models and treating the point
estimates reported in papers as merely a starting point.

A few limitations should be discussed. I classify different programs as the “same”
intervention despite minor differences between them. This is because these programs
differ in too many idiosyncratic ways to be able to usefully categorize them into
�ner groups. While describing multiple distinct programs as being part of the “same”
intervention may be a common practice, it is important to remember that some of the
observed variation could be due to differences in the programs themselves.

One may also be concerned that results are driven by those interventions with the
greatest number of studies in the data set: micronutrients programs, conditional cash
transfers, and deworming programs. For results that are presented disaggregated by
intervention-outcome, such as the results in Table 4, this is not a concern. For the
regressions across intervention-outcome combinations reported in Table 7, however,
one might still wonder if results were driven by these interventions. It is also possible
that outcomes within the same intervention may be correlated. As discussed, I cannot
combine outcomes within an intervention, as that would make it harder to determine
the source of the observed heterogeneity.

More heterogeneity in treatment effects might be modeled using micro-data; data
taken from the results reported in academic papers are not as rich, providing both fewer
observations and fewer covariates. However, despite shifting norms, micro-data are
still rarely available,44 so the approach outlined in this paper may still frequently be
useful. Further, if more authors were to make their study’s micro-data available, that
would not in and of itself be suf�cient for building more complicated models to explain
heterogeneity, as typically there is little overlap in covariates collected across different
studies. To remedy this, more collaboration among researchers at an earlier stage would
be helpful.

In light of the observed variation in studies’ results, how policymakers combine
information from different studies is a fruitful area for further research. Coville and
Vivalt (2019), for example, �nd some evidence that policymakers exhibit “variance

44. Less than 10% of the studies in AidGrade’s database made micro-data available.
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neglect” in the same way they often suffer from extension neglect (sample size
neglect): they do not fully take con�dence intervals into consideration when updating.
If policymakers also pay more attention to the more positive results, this would lead to
those interventions with a greater dispersion of results being considered to have better
effects. This paper hence underscores the importance of further research to determine
how policymakers interpret the information they are given and how to best present
information to enable optimal decision-making.

6. Conclusion

How much impact evaluation results generalize to other settings is an important
question. Before now, no data set existed with many different types of interventions,
with all data collected in the same way, with which to present a broad overview. The
issues underlying external validity are well-known and assessments of external validity
will always remain best conducted on a case-by-case basis. However, with the results
presented here, it begins to be possible to speak a bit more generally about how results
tend to vary across contexts and what that implies for impact evaluation design and
policy recommendations.

I consider several ways to evaluate the magnitude of the variation in results.
Whether results are too heterogeneous ultimately depends on the purpose for which
they are being used, as some policy decisions might have greater room for error
than others. However, I suggested a way of thinking about the problem based on
the relationship between these measures and one’s ability to draw inferences about
results in another setting and provided estimates for many intervention-outcome
combinations.

I found evidence of systematic variation in effect sizes that is surprisingly robust
across different interventions and outcomes. Smaller studies tended to have larger
effect sizes, which might be expected if the smaller studies are better-targeted, are
selected to be evaluated when there is a higher a priori expectation they will have a large
effect size, or if there is a preference to report larger effect sizes, which smaller studies
would obtain more often by chance. Government-implemented programs also had
smaller effect sizes than academic/NGO-implemented programs, even after controlling
for sample size. This is unfortunate given we often do smaller impact evaluations with
NGOs in the hopes of �nding a strong positive effect that can scale through government
implementation and points to the importance of research on scaling up interventions.
RCTs do not appear to have signi�cantly different effect sizes than quasi-experimental
studies.

I then sought to explain heterogeneity within several intervention-outcome
combinations covered by a large number of studies. Heterogeneity measures greatly
improved for some intervention-outcome combinations, but not for others. I also
explored variation across different subgroups for one particular intervention-outcome
combination, which afforded a larger sample size. Taken together, the results suggest
that careful modeling could help substantially and that there are likely to be large gains
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in using even more disaggregated micro-data.
There are some steps that researchers can take that may improve the

generalizability of their own studies. First, just as with heterogeneous selection into
treatment (Chassang et al. 2012), one solution would be to ensure one’s impact
evaluation varied some of the contextual variables that one might think underlie the
heterogeneous treatment effects. Given that many studies are underpowered as it is, that
may not be likely. However, large organizations and governments have been supporting
more impact evaluations, providing more opportunities to explicitly integrate these
analyses. Efforts to coordinate across different studies, asking the same questions or
looking at some of the same outcome variables, would also help. Framing these efforts
as increasing our understanding of heterogeneous treatment effects could also provide
positive motivation for replication projects in different contexts. Different �ndings
would not necessarily negate the earlier ones but add another level of information.

In summary, generalizability is not binary but something that we can measure.
Policymakers should take caution when extrapolating from studies done in other
contexts, and researchers should pay more attention to sampling variance, modeling,
coordination, and replication.
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