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Chapter 1

Introduction

1.1 Spatial Data and Spatial Problems

This thesis discusses the theory behind a few ways of modelling spatial correlation and

estimating the models’ parameters.

To begin, we first need a clear understanding of the kinds of spatial data we might face

and the kinds of spatial problems we may want to solve, since these topics dictate what

kinds of models would be useful. There are a few different kinds of spatial data we may

have.

First, our data might be geostatistical or point-level data, such as weather data from a

set of monitoring stations. We may then be interested in the interpolated weather at any

point in the space.

In contrast, with lattice or areal data our data is in the shape of a grid. In regular

lattices, our observations are located at regular intervals in different dimensions across the

space; we can also estimate irregular lattices. Remote sensing data, in particular, often

comes in the form of tiles, which can be easily thought of as lattices. We can also think of

political boundaries (e.g. wards) defining an irregular lattice, though this may introduce

new difficulties, such as if these plots are of grossly different sizes. We can also have a lattice
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with missing data, such as where weather precludes some observations from being made.

Finally, the locations themselves could be the random variables of interest, such as the

locations where a species of animal is observed. These data are called point process data or

point patterns.

Comparing spatial data to time-series data, the closest analogue to time-series data

would be the case in which we have observations along a single spatial line. However, even

in this example, we have more structure in time-series data; time has an arrow.

We can also have data in which we have both spatial and temporal correlation. We can

extend spatial models fairly straight-forwardly to take temporal correlation into account.

For example, if we have lattice data and each datapoint has a set of spatial neighbours, we

can define the set of neighbours of a node to be the union of the set of its spatial neighbours

and its temporal neighbours, as illustrated below.

Figure 1.1: Lattice data with the grey node’s neighbours in time highlighted by the dashed
line.

In this thesis, I will focus largely on lattice data structures but also somewhat on

geostatistical point-level data. Again, to contrast lattice and geostatistical data, with lattice

data we are not concerned with the possibility of a measurement in between adjacent nodes.

There are, however, obvious links between geostatistical and lattice data. In particular, we
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could think about geostatistical data as being on a very finely spaced lattice, with many

missing observations, or we could aggregate the geostatistical data up to a grid. Models for

lattice data may then be used for geostatistical data.

1.2 Methods of Modelling

There are two main approaches to spatial modelling.

Geostatistical models are applied to continuous spatial processes and typically are a

function of distance and direction between geostatistical data.

Gaussian Markov Random Field models (GMRFs) model the data as being related to

each other through an undirected graph. I will focus on the latter kind of model in this

thesis.

The concept of GMRFs sprung from attempts to generalize a specific model put forth by

the physicist Ernst Ising. Ising (1925), building on work by Lenz (1920), considered sequences

of points on a line in which each point had a certain “spin”. Ising models attempt to assign

a probability measure to a sample space that cannot be observed, with the probability

measures called Gibbs measures. Pairwise interactions were of initial interest in statistical

physics, such as in describing gravitational and electrostatic forces, but the idea of these

spatially-dependent interactions was later extended to encompass a broader area. Spitzer

(1971) and Hammersley and Clifford (1971) generalized the result linking Gibbsian ensembles

with Markov fields which led to GMRFs.

When might GMRFs be appropriate? GMRFs can handle data on both regular and

irregular lattices. This is important since, although much attention is focused on regular

lattices, these lattices do not usually arise naturally but are man-made. However, even

much spatial data that appears to be in a regular lattice structure, such as tiled satellite

data, may not be well estimated by GMRFs since each datapoint actually represents many

(possibly unknown) values in a larger plot which have somehow been averaged or otherwise
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collapsed into a single value. Whittle (1954) notably discussed this as a problem in fitting

a dataset from Mercer and Hall. The size of the plot that is collapsed can affect how well

GMRFs can fit the data (Besag, 1974). Further, unless a dataset includes a large number of

sites which are mostly neighbours, it may not be well-suited to being described by a lattice.

This is because the data are presumably situated within a larger world, and if there are

spatial relationships within the data there are likely relationships between those sites near

the borders and sites outside the dataset, on which there are no data. Despite this, lattices

have been successfully applied to carefully controlled and constructed agricultural field trials

(Ripley, 1989).

GMRFs can also be useful even when we might otherwise think to use a geostatistical

model, since they are less computationally-intensive than fitting the geostatistical model

directly. Indeed, many have tried to use GMRFs to estimate geostatistical models and vice

versa, a topic we will explore later in this thesis. Besag (1981) showed that the covariance

function of a GMRF could be approximated by a Bessel function that is modified so that

it decreases monotonically with distance. Griffith and Csillag (1993) tried to minimize

the squared differences between the covariances of geostatistical models and GMRFs.

Hrafnkelsson and Cressie (2003) showed that a class of GMRFs was approximated in an

empirical setting by a geostatistical model that used a Matérn covariance model. Rue and

Tjelmeland (2002) and Cressie and Verzelen (2008) represent the most recent efforts at

finding good approximations through a distance minimization approach. Finally, looking for

an entirely new method of approximating GGMs with GMRFs, Lindgren, Lindström and

Rue (2010) find that an approximate solution to a particular stochastic partial differential

equation (SPDE) can explicitly link GMRFs and GGMs for a restricted class of GGMs (a

subset of the Matérn class). These papers will be discussed in more detail in chapter 6 and

7.

GMRFs can be used to model stationary or non-stationary processes. Stationary Markov

Random Fields are Markov Random Fields which have a constant mean (i.e. one that does
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not depend on the location of the observation) and in which the covariance between any two

nodes is a stationary covariance function, i.e. one in which the covariance function depends

only on the vector distance between the nodes.1 When the distribution is assumed to be

Gaussian, as in a GMRF, with constant mean, we automatically have stationarity if the

GMRF has full conditionals. In practice, stationarity means that the relationship between

two nodes in the graph is a function solely of their position relative to one another, no matter

where they are situated. If the covariance function is a function only of the Euclidean distance

between the two nodes (i.e. no direction is involved), then the covariance function is isotropic.

Stationarity has proved a problematic assumption in quite a few historical papers. Among

them, Patankar suggested it was a problem in fitting the Mercer and Hall data (1954). It

has also been noted that some plant data of Freeman (1953) exhibited different relations

between the upper and lower halves of the lattice since one half was diseased (Bartlett,

1974). A stationary model would be a poor fit here. While much of this thesis will focus on

stationary GMRFs, it is also possible to conceptualize non-stationary GMRFs. The chapter

on intrinsic GMRFs will prove useful here, since these are often used as non-stationary priors

in hierarchical Bayesian models.

With these aspects of GMRFs in mind, this thesis will be structured in the following way:

first, we will discuss geostatistical models and introduce GMRFs formally, going through the

necessary definitions to understand them. Second, we will solidify our understanding of

GMRFs as compared to time-series models, focusing on CAR and SAR models. Third, we

will discuss improper GMRFs, which are important in forming priors, which is obviously

a large part of estimating GMRFs by Bayesian methods. Fourth, we will discuss the

computational benefits of modelling GMRFs over other models, notably geostatistical

models. Finally, over two chapters, we will consider to what extent GMRFs can approximate

Gaussian geostatistical models, reviewing both traditional as well as newer methods. Overall,

this thesis aims to explain the concept of GMRFs and their estimation as well as when they

1This is often called second-order or weak stationarity.
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are practically of use, particularly in relation to geostatistical models.
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Chapter 2

Geostatistical Models and Gaussian

Markov Random Fields

In this chapter I introduce geostatistical models and GMRFs and discuss some of their

important properties.

2.0.1 Geostatistical Models

Geostatistical models are typically based on variograms or covariance functions, functions

that describe the spatial correlation between different points. Formally, given a stochastic

process Z(s) a variogram, 2γ(x, y), is the expected squared difference in values between two

locations x and y: 2γ(x, y) = E(|Z(x)−Z(y)|2). γ(x, y) is the semivariogram. Assumptions

of various forms of stationarity are often made, but can be weakened. In particular, to

use the semivariogram one makes the assumption that the spatial process is second-order

stationary in first differences (i.e. the process has a constant mean and the variance of the

first differences, Z(s)−Z(s+ h), does not depend on the location of the observation). This

form of stationarity is also called intrinsic stationarity of the spatial process and it is weaker

than the assumption of second-order stationarity of the spatial process, which requires the

mean to be constant over all locations and the covariance to depend only on the separation
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between points rather than their locations. Other important terms are the nugget (C0),

represented by the y-intercept depicted below, the sill (C(0)), the model asymptote, and the

range (a), the distance between the y-axis and the value at which the sill level is reached (or,

for asymptotic sills, the value at which the distance to the sill is negligible, conventionally

defined as where the semivariance reaches 95% of the sill).

Figure 2.1: Nugget, Sill, and Range

The spatial correlation structures abled to be modelled through these kinds of models

are clearly vast. The equations specifying some common semivariogram models are included

in the table below.
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Model Semivariogram

Linear γ(h) =


0 h = 0

C0 + C(0)|h| h 6= 0

Exponential γ(h) =


0 h = 0

C0 + C(0)
(

1− exp
(
−|h|
a

))
h 6= 0

Spherical γ(h) =



0 h = 0

C0 + C(0)

(
1.5 |h|

a
− 0.5

(
|h|
a

)3
)

0 < |h| ≤ a

C0 + C(0) |h| ≥ a

Gaussian γ(h) =


0 h = 0

C0 + C(0)
(

1− exp
(
−|h|2
a2

))
h 6= 0

Power γ(h) =


0 h = 0

C0 + C(0)|h|λ h 6= 0

Matérn γ(h) =


0 h = 0

C0 + C(0)

(
1− (2

√
ν
|h|
a

)2

2ν−1Γ(ν)
Kν(2

√
ν |h|
a

)

)
h 6= 0

In this chart, Kν is a Bessel function with order ν > 0 determining the smoothness of the

function and Γ(ν) is the Gamma function. When ν = 1
2
, the Matérn covariance function

reduces to an exponential covariance function and as ν → ∞ it approaches a Gaussian

model.

These models are all isotropic, i.e. the same relationships are assumed to hold in all

directions. In many cases, we might not think it would hold. For example, we might

expect spatial correlation in one direction but not another, such as how we might expect

temperature to vary more along a North-South axis than East-West. One alternative to

isotropy is geometric anisotropy, in which the anisotropy can be transformed into isotropy

by a linear transformation (Cressie, 1993).
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The models that we will be discussing are also going to be based on Gaussian processes.

There are cases in which we may think we are facing a non-Gaussian process. Diggle,

Tawn and Moyeed give the examples of radionuclide concentrations on Rongelap Island and

campylobacter infections in north Lancashire and south Cumbria as cases where we might

think that if Y is our dependent variable and S(x) is our spatial process, Yi|S(xi) probably

does not follow a Gaussian distribution (1998).

It was previously mentioned that the Matérn class of models specifies a “smoothness”

parameter. In fact, the other classes of models have different degrees of intrinsic smoothness,

as well. Banerjee and Gelfand (2003) discuss two types of continuity that may characterize

a process: mean square continuity and a.s. continuity. Mean square continuity is another

term for continuity in the L2 sense, whereby a process X(t) ∈ Rd is L2 continuous at t0

if limt→t0E[X(t) − X(t0)]2 = 0. If the covariance function of a process in Rd is d-times

continuously differentiable, then the process is mean square continuous. A process is a.s.

continuous at t0 if instead X(t) → X(t0) a.s. as t → t0. Either type of continuity can be

used to characterize smoothness. Smoothness captures the idea is that some processes are

relatively continuous across different points (e.g. elevation levels of rolling hills) and others

are relatively discontinuous (e.g. elevation levels of regions with cliffs).

The following figures use data simulated under some of these models to illustrate the

concept. The variance of each is 1 and the range, a, is chosen for each model so that the

correlation at distance 0.5 has decayed to 0.05. This is so that the effect of model smoothness

may be seen. For the Matérn models, a few different ν are chosen: ν = 1, ν = 2 and ν = 3;

these show how the Matérn model gets closer to the Gaussian model as ν increases, and it

should also be recalled that the exponential model is the same as a Matérn model with ν = 1
2
.

11



Figure 2.2: From left to right, top down: Simulations of Gaussian, Spherical, Exponential,
and Matérn Models with ν = 1, 2, 3
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Under stationarity, the semivariogram is related to the covariance function in the

following way:

2γ(h) = V ar(Z(s+ h)− Z(s))

= V ar(Z(s+ h)) + V ar(Z(s))− 2Cov(Z(s+ h), Z(s))

= C(0) + C(0)− 2C(h)

= 2(C(0)− C(h))

=⇒ γ(h) = C(0)− C(h)

where C(0) is the variance of the process, also denoted σ2. Covariance functions are

frequently used but, again, require stronger assumptions than do semivariogram models.

The geostatistical literature is vast and even the requirements of intrinsic stationarity can

be relaxed (Cressie, 1993). For our purposes, the key take-away is that these models are

highly flexible. Still, they can be computationally intensive, a fact we will revisit in a later

chapter.

2.1 Gaussian Markov Random Fields

I will now turn to discuss GMRFs. Before beginning, I will need to define some of the

terms that I will use in the rest of this thesis. This introduction follows Rue and Held (2005).

2.1.1 Undirected Graphs

An undirected graph G is a tuple G = (V,E) where V is the set of nodes in the graph

and E is the set of edges {i, j} where i, j ∈ V and i 6= j. If {i, j} ∈ E there is an undirected

edge between node i and node j; otherwise, there is no such edge. A graph is fully connected

if {i, j} ∈ E ∀i, j ∈ V with i 6= j. We can label our graphs according to their nodes,
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V = {1, 2, ..., n}, and these are called labelled graphs. The neighbours of node i are all the

nodes in G that have an edge to node i, or

n(i) = {j ∈ V : {i, j} ∈ E}

If i and j are neighbours in a graph, this will be written as i ∼ j. We can similarly say that

the neighbours of a set A ⊂ V are all nodes not in A but adjacent to a node in A, or

n(A) = ∪i∈An(i) \ A

A path from i1 to im is a sequence of distinct nodes in V , i1, i2, ..., im, for which

(ij, ij+1) ∈ E for j = 1, ...,m − 1. A subset C ⊂ V separates two nodes i /∈ C, j /∈ C if

every path from i to j contains at least one node from C. Two disjoint sets A ⊂ V \ C and

B ⊂ V \C are separated by C if all i ∈ A and j ∈ B are separated by C. In other words, if

we were to walk through the graph, we cannot start at a node in A and end somewhere in

B without passing through C.

GA denotes a subgraph of G defined by {V A, EA}, where V A = A, a subset of V , and

EA = {{i, j} ∈ E and {i, j} ∈ A × A}. In other words, GA is the graph that results if we

start with G and remove all nodes not in A and all edges connected to at least one node

which does not belong to A.

To explain some more notation used later, if we have a lattice I with sites ij where

i = 1, ..., n1 and j = 1, ..., n2, if C ∈ I then xC = {xi : i ∈ C}. Similarly, for −C,

x−C = {xi : i ∈ −C}.
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2.1.2 Other Useful Definitions

An n× n matrix A is positive definite iff

xTAx > 0 ∀x 6= 0

and symmetric positive definite (SPD) if in addition to being positive definite A is symmetric.

Suppose we have a random vector x = (x1, ..., xn)T with a normal distribution with mean

µ and covariance Σ. As another piece of terminology, the inverse covariance matrix Σ−1 is

also the precision matrix which we will denote Q.

2.1.3 Gaussian Markov Random Fields

Now we can define a GMRF. A random vector x = (x1, ..., xn)T ∈ Rn is a GMRF with

respect to a labelled graph G = (V,E) with mean µ and precision matrix Q > 0 iff its density

has the form

π(x) = (2π)−n/2|Q|1/2exp
(
−1

2
(x− µ)TQ(x− µ)

)
(2.1.1)

and

Qij 6= 0⇐⇒ {i, j} ∈ E ∀i 6= j

This means that in the labelled graph G = (V,E), where V = {1, ..., n}, E has no edge

between node i and node j iff xi ⊥ xj|x−{i,j}.1 If Q is completely dense, then G is fully

connected. We can also note that a GMRF is a normal distribution with a SPD covariance

matrix and any normal distribution with a SPD covariance matrix is a GMRF.

In what sense is a GMRF “Markov”? There are three Markov properties in which we

may be interested.

1Recalling the notation explained in 2.1.1, this is intuitive: conditioning on the whole graph aside from
xi and xj , xi and xj should be conditionally independent if and only if there is no edge between them.
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1. The pairwise Markov property :

xi ⊥ xj|x−{i,j} if {i, j} /∈ E and i 6= j

2. The local Markov property :

xi ⊥ x−{i,n(i)}|xn(i) ∀i ∈ V

3. The global Markov property :

xA ⊥ xB|xC

for all disjoint sets A,B,C where C separates A and B and A and B are non-empty

(if C is empty, xA and xB are independent).

The figure below illustrates these three Markov properties. For a GMRF, the three

properties are equivalent, as proved in Speed and Kiiveri (1986).
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Figure 2.3: Top: The pairwise Markov property - the black nodes are conditionally
independent given the grey nodes. Middle: The local Markov property - the black node
is conditionally independent of the white nodes given the grey nodes. Bottom: The global
Markov property - the black node is conditionally independent from the striped nodes given
the grey nodes.
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We will also want to consider conditional properties of GMRFs. In particular, we can

split x into sets A and B (where V = A ∪B, A ∩B = ∅), so that

x =

 xA

xB

 .

The mean and precision matrix can also be partitioned similarly:

µ =

 µA

µB



Q =

 QAA QAB

QBA QBB

 .

With this in mind, I present the following two useful theorems from Rue and Held

(2005):

Theorem 1. Let x be a GMRF wrt G = (V,E) with mean µ and precision matrix Q > 0.

Let A ⊂ V and B = V \A, where A,B 6= 0. The conditional distribution of xA|xB is then a

GMRF wrt the subgraph GA with mean µA|B and precision matrix QA|B > 0, where

µA|B = µA −Q−1
AAQAB(xB − µB) (2.1.2)

and

QA|B = QAA
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Proof. Assume µ = 0 for now; we will add it back in later. Then

π(xA|xB) ∝ exp

−1

2
(xA, xB)

 QAA QAB

QBA QBB


 xA

xB




∝ exp

(
−1

2
xTAQAAxA − (QABxB)TxA

)
.

The density of a normal distribution with precision P and mean γ is

π(z) ∝ exp

(
−1

2
zTPz + (Pγ)T z

)

so we see that QAA is the conditional precision matrix and the conditional mean

solves QAAµA|B = −QABxB. QAA > 0 since Q > 0. Finally, if x has mean µ then x − µ

has mean 0, so replacing x by x−µ where µ is no longer assumed to be zero, we get (2.3.2).

Theorem 2. Let x be normally distributed with mean µ and precision matrix Q > 0. Then

for i 6= j,

xi ⊥ xj|x−ij ⇐⇒ Qij = 0

where x−ij stands for x−{i,j}.

Proof. x ⊥ y|z ⇐⇒ π(x, y, z) = f(x, z)g(y, z) for some functions f and g and for all z with

π(z) > 0. Assuming µ = 0 and fixing i 6= j, WLOG, and using the definition of a GMRF,

we get

π(xi, xj, x−ij) ∝ exp

(
−1

2

∑
k,l

xkQklxl

)

∝ exp

−1

2
xixj(Qij +Qji)−

1

2

∑
{k,l}6={i,j}

xkQklxl


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The first term involves xixj iff Qij 6= 0 and the second term does not involve xixj. Thus

π(xi, xj, x−ij) = f(xi, x−ij)g(xj, x−ij) for some functions f and g iff Qij = 0.

Finally, we may want to use the canonical parameterization for a GMRF. The canonical

parameterization of a GMRF x wrt G is x ∼ NC(b,Q) where the precision matrix is Q and

the mean is µ = Q−1b. Note that then

xA|xB ∼ NC(bA −QABxB, QAA).

Further, if y|x ∼ N(x, P−1) then

x|y ∼ NC(b+ Py,Q+ P ).

These last results are useful in computing conditional densities.

Now that we have formally defined GMRFs and described their most salient properties,

it might be instructive to re-visit why we might think that making conditional independence

assumptions would be appropriate when dealing with spatial correlation. The intuition is

that after a certain threshold distance, the spatial correlation is assumed to be negligible.

Thus, conditioning on enough observations, one can get conditional independence. Apart

from the previously mentioned constraints on when GMRFs are useful, GMRFs would thus

require one to make more assumptions if the number of observations was small relative to

the number of observations that had to be conditioned on, i.e. if few observations were

conditionally independent.
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Chapter 3

Relation to Time-Series Analogues:

CAR and SAR Models

Having introduced GMRFs, it would be natural to ask how they correspond to perhaps

more familiar time-series models, since time-series models are motivated by temporal

correlation in much the same way as spatial models are motivated by spatial correlation.

The treatment in the next section is adapted from Rue and Held (2005) and Cressie (1993).

3.1 CAR and SAR Models

In time series, we may see an AR(1) process represented thusly:

xt = φxt−1 + εt, εt ∼ N(0, 1), |φ| < 1

where t indexes time.

This simple process assumes conditional independence, like a GMRF. xt is independent

of xs (where 1 ≤ s < t ≤ n) conditional on {xs+1, ..., xt−1}, or xt|x1, ..., xt−1 ∼ N(φxt−1, 1)

for t = 2, ..., n. This is a directed conditional distribution and straightforwardly gives us the
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precision matrix

Q =



1 −φ

−φ 1 + φ2 −φ
. . . . . . . . .

−φ 1 + φ2 −φ

−φ 1


We could also write the undirected conditional distribution, or full conditionals

{π(xt|x−t)}:

xt|x−t ∼


N(φxt+1, 1) t = 1

N
(

φ
1+φ2 (xt−1 + xt+1), 1

1+φ2

)
1 < t < n

N(φxn−1, 1) t = n

When we move away from time series, where the observations have a natural ordering,

into a domain where they do not (for example, with spatial data), this second specification

is more useful. In particular, specifying each of the n full conditionals

xi|x−i ∼ N
(
Σj:j 6=iβijxj, κ

−1
i

)
will specify the joint density of a zero mean GMRF. These models, popularized by Besag

(1974, 1975), are called conditional autoregression models or CAR models.

The n full conditionals must satisfy some requirements to ensure that a joint normal

density exists with these full conditionals. In particular, suppose we specify the full

conditionals as normals with

E(xi|x−i) = µi − Σj:j∼iβij(xj − µj) (3.1.1)

Prec(xi|x−i) = κi > 0 (3.1.2)
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for i = 1, ..., n, some {βij, i 6= j} and vectors µ and κ. Since ∼ is symmetric, we need the

requirement that if βij 6= 0, βji 6= 0. Recalling that a univariate normal random variable xi

with mean γ and precision κ has density proportional to

exp(−1

2
κx2

i + κxiγ), (3.1.3)

and x is a GMRF wrt G only if its density has the form

π(x) = (2π)−n/2|Q|1/2exp
(
−1

2
(x− µ)TQ(x− µ)

)
,

and

π(xA|x−A) =
π(xA, x−A)

π(x−A)
∝ π(x),

we get

π(xi|x−i) ∝ exp(−1

2
xTQx) (3.1.4)

∝ exp(−1

2
x2
iQii − xiΣj:j∼iQijxj). (3.1.5)

Comparing (2.4.3) and (2.4.5), we see that

Prec(xi|x−i) = Qii

and

E(xi|x−i) = − 1

Qii

Σj:j∼iQijxj

and since x has mean µ, if we replace xi and xj by xi − µi and xj − µj then we get

E(xi|x−i) = µi −
1

Qii

Σj:j∼iQij(xj − µj).
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Comparing these to (2.4.1) and (2.4.2), we see that choosing Qii = κi and Qij = κiβij and

requiring Q to be symmetric and Q > 0 would give us a candidate for a joint density giving

the specified full conditionals. Rue and Held (2005) show that this candidate is also unique.

Simultaneous autoregression models, or SAR models, are closely related to CAR models.

To return to our comparisons with autoregressive time-series models, whereas CAR models

are more analogous to time-series models in their Markov properties, SAR models are more

analogous in their functional forms (Cressie, 1993). We can motivate SARs similar to how

we motivated CARs, by assuming some spatial correlation so that there is some spatially

lagged version of the variable of interest on the RHS:

x = ρWx+ ε

where ρ is a spatial autoregression parameter that has to be estimated from the data and W

is a spatial weighting matrix so that neighbouring values are included with some weights into

the regression. W here is not necessarily symmetric, unlike in the CAR model. Re-arranging,

we get

x = (I − ρW )−1 + ε

and then

V ar(x) = (I − ρW )−1E(εεT )(I − ρW T )−1

or, if we assume normality, collapse ρ and W into a single parameter C, and let Λ equal the

covariance matrix E(εεT ),

x ∼ N(µ, (I − C)−1Λ(I − CT )−1).

Looking back at (2.4.1), we see that in the CAR model the covariance matrix is given by

V ar(x) = (I −B)−1M
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where M is an n× n diagonal matrix that must be estimated. This is quite similar to what

we found for the SAR model. CAR and SAR models are equivalent if and only if their

variance matrices are equal:

(I − C)−1Λ(I − CT )−1 = (I −B)−1M.

Since M is diagonal, any SAR can be represented as a CAR but not necessarily the other

way around.

3.2 Differences Between CAR and SAR Models

The main practical difference between CAR and SAR models is that the SAR model

does not impose the restriction that W is symmetric and may be harder to estimate as a

consequence. Indeed, if ρ is not known, the SAR model is inconsistently estimated by least

squares (Whittle, 1954). In contrast, generalized least squares can be used to estimate the

parameters of a simple CAR model and then the residuals can be used to estimate ρC , a

CAR counterpart to ρ, using ordinary least squares (Haining, 1990). Since SAR models

have more parameters, to estimate them in practice one typically assumes that some of the

parameters are known (Waller and Gotway, 2004). SAR models are also not conveniently

estimated using hierarchical Bayesian methods since it is difficult to include SAR random

effects, and CAR is more convenient for computing. However, if computing time is not

an issue, SAR models are very convenient for maximum likelihood estimation and their

structure makes them frequently and most naturally used in econometric regressions. It

has been argued that SAR models are also more appropriate for studies that involve

second-order dependency captured by W (Bao, 2004).

These differences aside, in terms of results, most studies that try both types of models

find no large differences between the two (e.g. Lichstein et al., 2002). Wall (2004) also
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severely critiques spatial interpretations of both CAR and SAR weighting schemes, finding

unintuitive behaviour. For example, there does not seem to be much sense in a spatial

model insisting, as hers did, that Missouri and Tennessee were the least spatially correlated

states in the U.S., with Missouri being more correlated with Kansas than Iowa. One might

think that all these models would be inappropriate over such large geographical areas with

so few observations. The debate about whether CAR or SAR models are preferable or even

appropriate in different circumstances continues.

26



Chapter 4

Intrinsic Gaussian Markov Random

Fields

In this chapter I explain the details of intrinsic GMRFs and their modelling. Intrinsic

GMRFs (IGMRFs) are improper, meaning that their precision matrices are not of full rank.

There are a few definitions of the order of an IGMRF, but we will follow Rue and Held

(2005) in calling the order of an IGMRF the rank deficiency of its precision matrix (see

Künsch (1987) for a slightly different definition).

Intrinsic GMRFs are very important because they are the typical priors used when

estimating using Bayesian methods. We will see that they have a natural relationship with

different modelling choices, including the thin plate spline. The point of this chapter is

to understand the correspondence between physical modelling choices and priors and the

matrices used in estimation. We will work up to deriving precision matrices for a few of the

more frequently-used modelling choices. The examples presented here are selected from Rue

and Held (2005) and fleshed out in greater detail.

To quickly define additional terms that will be necessary, the null space of A is the set

of all vectors x such that Ax = 0. The nullity of A is the dimension of the null space. If

a singular n× n matrix A has nullity k, |A|∗ will denote the product of the n− k non-zero
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eigenvalues of A.

The first-order forward difference of a function f(·) is

∆f(z) = f(z + 1)− f(z)

and more generally higher order forward differences are defined recursively so that:

∆kf(z) = ∆∆k−1f(z)

or

∆kf(z) = (−1)k
k∑
j=0

(−1)j

 k

j

 f(z + j)

for k = 1, 2, ....

For example, the second-order forward difference is:

∆2f(z) = f(z + 2)− 2f(z + 1) + f(z)

Proceeding along, with these preliminaries out of the way, now letQ be an n×n symmetric

positive semidefinite (SPSD) matrix with rank n − k > 0. x = (x1, ..., xn)T is an improper

GMRF of rank n− k with parameters (µ,Q) if its density is

π(x) = (2π)−
(n−k)

2 (|Q|∗)
1
2 exp

(
−1

2
(x− µ)TQ(x− µ)

)
.

x is an improper GMRF wrt to the graph G if in addition Qij 6= 0⇐⇒ {i, j} ∈ ∀i 6= j.

It should be noted that (µ,Q) do not represent the mean and the precision anymore since

these technically no longer exist. (However, we will keep referring to them as the mean and

the precision for convenience.) For intuition, we can think of a Q(γ):

Q(γ) = Q+ γATA
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where the columns of AT span the null space of Q. Each element of Q(γ) corresponds to the

appropriate element in Q as γ → 0.

An improper GMRF of rank n − 1 where
∑

j Qij = 0 ∀i is an intrinsic GMRF of first

order. We will call the condition
∑

j Qij = 0 ∀i “Q1 = 0” for convenience; in words, the

vector 1 spans the null space of Q.

Now we will discuss IGMRFs of first order in a few different settings: on a line for

regularly spaced locations; on a line for irregularly spaced locations; and on a lattice for

regularly and irregularly spaced locations. We will then detail IGMRFs of higher order.

4.1 IGMRFs of First Order on the Line, Regularly

Spaced

This is also known as the first-order random walk. The nodes are assumed to be located

at a constant distance apart; for convenience, we will label the nodes i = 1, ..., n and think

of them as 1 unit of distance apart in that order. i could be thought of as time, as well as

distance.

The model assumes independent increments

∆xt ∼ N(0, κ−1), i = 1, ..., n− 1

or

xj − xi ∼ N(0, (j − i)κ−1), i < j

If the intersection of {i, ..., j} and {k, ..., l} is empty for i < j and k < l then

Cov(xj − xi, xl − xk) = 0
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The density for x is then:

π(x|κ) ∝ κ(n−1)/2exp

(
−κ

2

n−1∑
i=1

(∆xi)
2

)

= κ(n−1)/2exp

(
−κ

2

n−1∑
i=1

(xi+1 − xi)2

)

= κ(n−1)/2exp

(
−1

2
xTQx

)

where Q = κR, with R being the structure matrix :

R =



1 −1

−1 2 −1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 2 −1

−1 1


that follows from

∑n−1
i=1 (∆xi)

2 = (Dx)T (Dx) = xTDTDx = xTRx where D is an (n− 1)×n

matrix of the form

D =



−1 1

−1 1

. . . . . .

−1 1


In words, D takes this form because it represents a first-order forward difference.
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4.2 IGMRFs of First Order on the Line, Irregularly

Spaced

We will call the locations si and even though they are not regularly spaced anymore

we can still order them s1 < s2 < ... < sn and call the distance δi = si+1 − si. The

first-order random walk over continuous distances (or time) is analogous to a Wiener process

in continuous time. Formally, a Wiener process with precision κ is a stochastic process W (t)

for t ≥ 0 with W (0) = 0 and increments W (t) −W (s) that are normally distributed with

mean 0 and variance (t − s)/κ for any 0 ≤ s < t and independent if the time intervals do

not overlap. If κ = 1 this is a standard Wiener process.

The model is fundamentally the same as in the regularly spaced, discrete time model. It

is still true that
∑

j Qij = 0 ∀i and the joint density of x is

π(x|κ) ∝ κ(n−1)/2exp

(
−κ

2

n−1∑
i=1

(xi+1 − xi)2/δi

)

where the only difference is that the exponential term is scaled with δi since V ar(xi+1−xi) =

δi/κ.

4.3 IGMRFs of First Order on a Lattice

First we must clarify our notation. A lattice will be denoted In with n = n1n2 nodes.

(i, j) will denote the node in the ith row and jth column. The following discussion will be

in reference to irregular lattices but the case of regular lattices is subsumed within it.

If we have two neighbouring regions i and j, we will define a normal increment to be

xi − xj ∼ N(0, κ−1)
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Assuming the increments to be independent, we get the familiar IGMRF density:

π(x) ∝ κ(n−1)/2exp

(
−κ

2

∑
i∼j

(xi − xj)2

)

where i ∼ j denotes the set of all unordered pairs of neighbours (unordered so as to prevent

us from double-counting).

It should be noted that the increments are not truly independent, since the geometry of

the lattice imposes hidden linear constraints. We can see this by noting that the number

of increments |i ∼ j| is larger than n but the rank of the corresponding precision matrix

remains n − 1. As a concrete example, we can consider that if we have 3 nodes, all of

which are neighbours of each other, we have x1 − x2 = ε1, x2 − x3 = ε2, x3 − x1 = ε3 and

ε1 + ε2 + ε3 = 0, a hidden constraint.

Despite the constraint, however, the density of x is still represented correctly above.

Define ε to be |i ∼ j| independent increments and Aε to be the constraints that say that

the increments sum to zero over all the graph’s circuits. Then π(ε|Aε) ∝ π(ε). Changing

variables from ε to x gives the exponential term and the constant is unaffected by the

constraint.

4.4 IGMRFs of Higher Orders

First, I will introduce some notation which should make the subsequent discussion easier

to read. Since IGMRFs are often invariant to the addition of a polynomial of a certain

degree, let us define notation for these polynomials.

For the case of an IGMRF on a line, let s1 < s2 < ... < sn denote the ordered locations

on the line and s denote the vector (s1, ..., sn)T . Now we will let pk(si) denote a polynomial
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of degree k evaluated at the locations s with some coefficients βk = (β0, ..., βk)
T :

pk(si) = β0 + β1s1 +
1

2
β2s

2
i + ...+

1

k!
βks

k
i

or pk = Skβk. Sk is the polynomial design matrix of degree k.

For higher dimensions, we instead let si = (si1 , si2 , ..., sid) where sij is the location of

node i in the jth dimension, and j = (j1, j2, ..., jd), s
j
i = sj1i1s

j2
i2
...sjdid , and j! = j1!j2!...jd!. A

polynomial trend of degree k in d dimensions is:

pk,d(si) =
∑

0≤j1+...+jd≤k

1

j!
βjs

j
i

or pk,d = Sk,dβk,d. It will have

mk,d ≡

 d+ k

k


terms.

Higher-order IGMRFs have a rank deficiency larger than one. Formally, an IGMRF of

order k on the line is an improper GMRF of rank n− k where −1
2
(x+ pk−1)TQ(x+ pk−1) =

−1
2
xTQx so that the density seen when first introducing IGMRFs,

π(x) = (2π)−
(n−k)

2 (|Q|∗)
1
2 exp

(
−1

2
(x− µ)TQ(x− µ)

)

is invariant to the addition of any polynomial of degree k − 1,pk−1 to x. (We can simplify

notation for this last condition and write it as QSk−1 = 0.)

Another way to state this is to say that we can decompose x into a trend and a residual

component, as follows:

x = Hk−1x+ (I −Hk−1)x

where the projection matrix Hk−1 projects x down to the space spanned by the column space

of Sk−1 and I −Hk−1 annihilates anything in the column space of Sk−1, projecting onto the
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space that is orthogonal to that spanned by Sk−1. Formally, Hk−1 = Sk−1(STk−1Sk−1)−1STk−1

(i.e. it is just a standard projection matrix). Using projection notation, we require

−1
2
xTQx = −1

2
((I − Hk−1)x)TQ((I − Hk−1)x) (since QHk−1 = 0 and so that term

disappears). This is more readily interpretable: the density of a kth order IGMRF only

depends on the residuals that remain after removing any polynomial trend of degree k − 1.

Similarly, an IGMRF of order k in dimension d is an improper GMRF of rank n−mk−1,d

where QSk−1,d = 0.

As an example, let us consider the regularly spaced second-order random walk, first on

a line and then on a lattice.

4.5 IGMRFs of Second Order on the Line, Regularly

Spaced

This case is analogous to the case of IGMRFs of first order on the line, except with

second-order increments ∆2xi ∼ N(0, κ−1). Then joint density of x is then:

π(x) ∝ κ(n−2)/2exp

(
−κ

2

n−2∑
i=1

(xi − 2xi+1 + xi+2)2

)

= κ(n−2)/2exp

(
−1

2
xTQx

)
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where the precision matrix is:

Q = κ



1 −2 1

−2 5 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

. . . . . . . . . . . . . . .

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 5 −2

1 −2 1


Again, these numbers come from the fact that we can write xi − 2xi+1 + xi+2 in matrix

form as

D ≡



1 −2 1

1 −2 1

. . . . . . . . .

1 −2 1


and (xi − 2xi+1 + xi+2)2 = DTD.

4.6 IGMRFs of Second Order on a Lattice

In this section I will discuss the example of IGMRFs of second order on a regular lattice

with two dimensions. This case can be easily extended to more dimensions.

For the case of a second-order IGMRF on a regular lattice with two dimensions, let us

for a simple example choose the increments

(xi+1,j + xi−1,j + xi,j+1 + xi,j−1)− 4xi,j (4.6.1)
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This is just
(

∆2
(1,0) + ∆2

(0,1)

)
xi−1,j−1 where ∆ is generalized to account for direction so that

∆(1,0) is the forward difference in direction (1, 0) and ∆(0,1) is the forward difference in

direction (0, 1). Analogously to the polynomials added to x in previous examples, adding

the simple plane p1,2(i, j) = β00 + β10i + β01j to x will cancel in 4.7.1 for any coefficients

β00, β10, β01.

As we would expect from the previous examples, the precision matrix should correspond

to:

−
(
∆2

(1,0) + ∆2
(0,1)

)2
= −

(
∆4

(1,0) + 2∆2
(1,0)∆

2
(0,1) + ∆4

(0,1)

)
.

This is actually an approximation to the biharmonic differential operator

(
δ2

δx2
+

δ2

δy2

)2

=
δ4

δx4
+ 2

δ4

δx2
δy2 +

δ4

δy4
.

It also therefore relates to the thin plate spline, a two-dimensional analogue of the cubic

spline in one dimension, which is the fundamental solution of the biharmonic equation

(
δ4

δx4
+ 2

δ4

δx2
δy2 +

δ4

δy4

)
φ(x, y) = 0

Finally, it should be noted that the choice of increments in (4.6.1) represents, visually:

Figure 4.1: Depiction of (4.6.1).

where the black dots represent the locations in the lattice which are taken into consideration

and the white dots merely make the spatial configuration clear.

This may not be the ideal choice of increments, depending on our data and our aim;
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alternative choices are possible, representing different models. Our having gone through

examples of IGMRFs of first and second order on the line and on a lattice, however, cover

a lot of the cases one might be interested in, with many results able to be straightforwardly

extended.
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Chapter 5

Computational Advantages and

Applications to GGMs

In this chapter we discuss the reasons why GMRFs are so computationally efficient.

GMRFs’ computational benefits, particularly in comparison to estimating geostatistical

models, are a large source of their popularity, and this will motivate us to survey attempts

to fit GMRFs to Gaussian geostatistical models, or GGMs, in subsequent chapters.

5.1 Taking Advantage of Sparse Matrices

The main tasks of the algorithms involved in simulating and estimating the parameters of

GMRFs via likelihood-based methods are computing the Cholesky factorization of Q = LLT

and solving systems of the form Lv = b and LT = x. But Q is sparse, and this can help us

speed up the process. This section will explain why a sparse Q can help and how we can

take advantage of its sparseness.

When factorizing a matrix Q = LLT , what we are really doing is computing each of

Qij =

j∑
k=1

LikLjk i ≥ j
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If we define vi = Qij −
j−1∑
k=1

LikLjk i ≥ j then L2
jj = vj and LijLjj = vi for i > j. Then if

we know {vi} for fixed j we get the jth column in L because Ljj =
√
vj and Lij = vi√

vj
for

i = j + 1 to n. But {vi} for fixed j only depends on the elements of L in the first j − 1

columns of L, so we can go through and find all the columns in L.

Taking a step back, solving something like Lv = b for v where L is lower triangular, we

solve by forward substitution, in a forward loop:

vi =
1

Lii
(bi −

i−1∑
j=1

Lijvj), i = 1, ..., n

Solving LTx = v for x where LT is upper triangular involves back substitution, since the

solution requires a backward loop:

xi =
1

Lii
(vi −

n∑
j=1+1

Ljixj), i = n, ..., 1

Now consider the most basic case of sampling x ∼ N(µ,Q−1) where x is a GMRF wrt

to graph G with mean µ and precision matrix Q > 0. We would:

1. Compute the Cholesky factorization, Q = LLT .

2. Sample z ∼ N(0, I).

3. Solve LTv = z.

4. Compute x = µ+ v.
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The theorems below from Rue and Held (2005) follow:

Theorem 3. Let x be a GMRF wrt the graph G with mean µ and precision matrix Q > 0.

Let L be the Cholesky triangle of Q. Then for i ∈ V :

E(xi|x(i+1):n) = µi −
1

Lii

n∑
j=1+1

Lji(xj − µj)

Prec(xi|x(i+1):n) = L2
ii

This also implies the following:

Theorem 4. Let x be a GMRF wrt the graph G with mean µ and precision matrix Q > 0.

Let L be the Cholesky triangle of Q. Define the future of i except j to be the set:

F (i, j) = {i+ 1, ..., j − 1, j + 1, ..., n}

for 1 ≤ i < j ≤ n. Then

xi ⊥ xj|xF (i,j) ⇐⇒ Lji = 0

Proof. Assume µ = 0 WLOG and fix 1 ≤ i < j ≤ n. Theorem 2 gives

π(xi:n) ∝ exp

−1

2

n∑
k=i

L2
kk

(
xk +

1

Lkk

n∑
j=k+1

Ljkxj

)2


= exp

(
−1

2
xTi:nQ

i:nxi:n

)

where Qi:n
ij = LiiLji. Theorem 2 then implies that

xi ⊥ xj|xF (i,j) ⇐⇒ LiiLji = 0
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This is equivalent to

xi ⊥ xj|xF (i,j) ⇐⇒ Lji = 0

since Q(i:n) > 0 implies Lii > 0.

Thus, if we can verify that Lji is zero, we do not have to compute it. Of course, we do

not want to have to verify that Lji is zero by computing it and comparing it to zero. Instead,

we can make use of a corollary to Theorem 4:

Corollary 5. If F (i, j) separates i < j in G then Lji = 0.

This follows from the fact that the global Markov property guarantees that if F (i, j)

separates i < j in G then xi ⊥ xj|xF (i,j). Thus, by Theorem 4, Lji = 0.

As an example, we can consider the following graph.

Figure 5.1: Nodes 1 and 4 are conditionally independent given nodes 2 and 3, and nodes 2
and 3 are conditionally independent given nodes 1 and 4.

The precision matrix for this graph could be represented as follows, where ×’s denote

non-zero terms and blanks denote terms that may possibly be zeros given the structure of

the graph:

Q =



× × ×

× × ×

× × ×

× × ×


.
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We cannot say that L32 is definitely zero, because F (2, 3) = {4}, which is not a separating

subset for 2 and 3 (in words, the future of 2 except 3 is just 4). We can, however, say that

L41 is definitely zero, since F (1, 4) = {2, 3}, which separates 1 and 4. Thus, we can fill in

the following array for L, where the possibly non-zero terms are denoted by “?”:

L =



×

× ×

× ? ×

× × ×



L will always be more or equally dense than the lower triangular part of Q. If we denote

the number of possible non-zero elements in L by nL and the number of possible non-zero

elements in Q by nQ then we are concerned with the fill-in nL − nQ. We obviously want to

make this as small as possible to make calculations as fast as possible.

5.1.1 Minimizing the Fill-in

As it turns out, the fill-in depends on the ordering of the nodes. As a motivating

example, consider the two graphs below.

Figure 5.2: Left: graph (a). Right: graph (b).
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In the case of graph (a), the precision matrix and its Cholesky triangle are:

Q =



× × × ×

× ×

× ×

× ×



L =



×

× ×

× ? ×

× ? ? ×


.

Whereas in the case of graph (b), the precision matrix and its Cholesky triangle are:

Q =



× ×

× ×

× ×

× × × ×



L =



×

×

×

× × × ×


.

In other words, in (a) the fill-in is maximal and in (b) the fill-in is minimal. The

reason is that in (a) all nodes depend on node 1, hence the future of i except j is never

a separating subset for i < j. In (b), by contrast, conditioning on node 4 makes all other

nodes conditionally independent.
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In general, then, a good strategy to minimize fill-in is to first select a set of nodes which,

if removed, would divide the graph into two disconnected subgraphs of roughly the same

size. Then order the nodes in that set after ordering all the nodes in both subgraphs. Then

repeat this procedure recursively to the nodes in each subgraph. In numerical and computer

science literature this is called nested dissection.

When Q is a band matrix we can instead try to reduce the bandwidth. A theorem states

that if Q > 0 is a band matrix with bandwidth p and dimension n, the Cholesky triangle of

Q has (lower) bandwidth p.1 The trick with spatial data is then to try to make Q a band

matrix with as small a bandwidth as possible, and again this is accomplished by re-ordering

the nodes.

5.2 Timing Studies

Some studies have quantified the reduction of time required to estimate a GMRF as

opposed to a geostatistical model. Using MCMC methods, an nr ×nc lattice (with nr ≤ nc)

can be simulated using O(n3
rnc) flops, and repeated i.i.d. samples only require O(n2

rnc) flops

(Rue and Tjelmeland, 2002). In contrast, general Gaussian fields typically require O(n3
rn

3
c)

flops to simulate. To calculate the likelihood of a GMRF and a general Gaussian field we

also need O(n3
rnc) and O(n3

rn
3
c) flops, respectively (Rue and Tjelmeland, 2002).

More recently, Rue and Martino (2007) and Rue, Martino and Chopin (2009) have

discussed an approach they call integrated nested Laplace approximations (INLAs). This

approach appears to outperform MCMC methods in the time required to execute them by

several orders of magnitude; simulation only takes seconds to minutes rather than hours

to days. The method’s primary disadvantage is that its computational cost does increase

exponentially with the number of hyperparameters. Yet as Rue, Martino and Chopin

conclude, this method may frequently be useful for taking a first pass at one’s data, even

1A direct proof is in Golub and van Loan (1996).

44



where one expects the model one is applying to not be a great fit, because at a few seconds

or a few minutes, it is practically cost-less. We will look at this method in greater detail

after first discussing how GMRFs have traditionally been fit to GGMs.
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Chapter 6

The Approximation of GGMs using

GMRFs: Traditional Minimizations of

Distance

There have been many attempts to use GMRFs to approximate GGMs, given the

computational efficiency of GMRFs. The process has traditionally been as follows. First, if

necessary, geostatistical data is aggregated up to lattices. Then a GMRF is used to model the

aggregated data, with its parameters selected to minimize a distance measure between the

GMRF and a particular GGM that has previously been fit to the data. The computations of

the distance measures use a fast Fourier transformation, as we will see. To properly discuss

this process, we thus need to do two things: 1) detail the distance measures used in the

literature; and 2) explain how these distance measures are computed and minimized. In this

chapter, we will do these two things and then discuss the benefits and limitations of this line

of research.
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6.1 Distance Measures

Three main pseudo-distances between Gaussian fields have been proposed: the

Kullback-Leibler divergence criterion (which I will abbreviate to KL), Rue and

Tjelmeland’s (2002) matched-correlation (MC) criterion, and Cressie and Verzelen’s (2008)

conditional-mean least-squares (CMLS) criterion.

The Kullback-Leibler divergence is defined as:

K(f, g) ≡
∫
f(x)log

(
f(x)

g(x)

)
dµ(x)

where f and g are densities and µ is a common measure. This pseudo-distance is historically

related to Shannon’s measure of entropy, but can be applied to fit the parameters of a GMRF

to a Gaussian field by making the following adjustments:

KL(f, g; θ) ≡
∫
f(x)log

(
f(x)

g(x; θ)

)
dx

where f and g are densities of the true and approximated models, respectively, and θ are the

parameters of the model. KL is not technically a distance since it is not symmetric and does

not satisfy the triangle inequality. If f and g are the joint densities of zero-mean Gaussian

fields with covariance matrices Σ1 and Σ2, respectively, then

KL(Σ1,Σ2) =
1

2
(log

(
|Σ2|
|Σ1|

)
+ tr(Σ1Σ−1

2 )− n)

where |Σ| is the determinant of Σ. While this distance measure does somewhat capture the

differences between the fields, it is hard to minimize. While minimizing a distance measure to

find a GMRF that approximates a Gaussian field is computationally intensive and destroys

the computational advantages of using GMRFs, this approach is used to show the extent to

which GMRFs can approximate Gaussian fields. Dempster (1972), Besag and Kooperberg

(1995), and Rue and Tjelmeland (2002) tried algorithms to minimize this pseudo-distance,
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which will be returned to in the next section. Dempster’s can fail to converge; Rue and

Tjelmeland’s cannot be applied in the case of an irregular lattice.

The next possible measure that we will consider is Rue and Tjelmeland’s

matched-correlation criterion. They define

MCω(Q) ≡ ||ρ− ρ′||2ω ≡
nr∑
i=1

nc∑
j=1

(ρij − ρ′ij)2ωij

where Q is the precision matrix, ωij are non-negative weights assigned by the user, and ρ

and ρ′ are correlation functions. In particular, they recommend, for isotropy:

ωij ∝

 1 + r if ij = 00;

(1 + r/d(ij, 00))/d(ij, 00) otherwise

where r is the range of the neighbourhood and d(ij, 00) is the Euclidean toroidal distance

between (i, j) and (0, 0). The computational costs of minimizing this function are also very

high.

Cressie and Verzelen (2008) instead suggest the following criterion:

CMLS(Q) ≡

(
n∑
i=1

1

V ar(Xi|x−1)

)−1

E

(
n∑
i=1

1

V ar(Xi|x−i)
(Xi − EQ(Xi|X−i))2

)

where X = (X1, ..., Xn) is a zero-mean Gaussian random vector. The weights, inversely

proportional to the conditional variance, are “Gauss-Markov” type weights used in GLS.

The intuition provided by the authors for using this measure is that they are interested in

obtaining the best prediction of an individual component based on the other components,

with weights used to scale the components so that their variability is comparable.

Unfortunately, this criterion is still computationally intensive since it uses essentially

the same steps as the other two criteria, as we will see. Variants are slightly better, but this

measure’s main advantage remains that it can easily handle GMRFs on irregular lattices
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and is good at predicting unknown values given neighbouring observations (Cressie and

Verzelen, 2008). In practice, the minimization of different pseudo-distances typically yields

similar results (Song, Fuentes and Ghosh, 2008).

6.2 Minimizing the Distance Measures

The distance measures need to be minimized to obtain the best-fitting GMRF, but how

exactly is this accomplished?

Let us start with the case of minimizing the Kullback-Leibler discrepancy since that is

still the most frequently used distance measure and all the other minimizations of distances

use very similar methods. In the simplest case, let f be a zero mean stationary GGM on a

nr × nc torus with covariance function γ(k, l) and covariance matrix Σ and let g be a zero

mean stationary GMRF on the same torus with precision matrix Q parameterized with θ.1

Then, as shown in Rue and Tjelmeland (2002),

KL(f, g) = −1

2

nr−1∑
i=0

nc−1∑
j=0

(log(λijqij(θ))− λijqij(θ) + 1)

where

λij =
nr−1∑
k=0

nc−1∑
l=0

γ(k, l)exp(−2πι(ki/nr + lj/nc))

qij(θ) =
∑

(k,l)∈δ00

∑
∪{00}

Q00,kl(θ)exp(−2πι(ki/nr + lj/nc))

1GMRFs on a torus are much faster to estimate and thus are frequently used despite the strong
assumptions required; indeed, Rue and Held describe how one might approximate a GMRF that is not
on a torus with a toroidal GMRF just in order to make calculations faster (2005). But if one does not want
to use a GMRF on a torus, one could instead simulate a GMRF that is not on a torus by an alternative
algorithm in Rue (2001) which costs O(n3

rnc) flops or O(n2
rnc) flops for repeated i.i.d. samples. We already

discussed a basic version of this algorithm in the chapter on simulations.
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and where δij is the neighbourhood of (i, j) and ι =
√
−1.

The KL discrepancy can hence be represented in terms of the eigenvalues of the

covariance and precision matrices of the GGM and GMRF. The eigenvalues themselves are

the two-dimensional discrete Fourier transform of the first row of Σ and Q(θ). Thus, one

can use a fast two-dimensional discrete Fourier transform algorithm to evaluate KL(f, g) in

O(nrnclog(nrnc)) flops or faster. After one has the eigenvalues one can numerically solve the

minimization problem to obtain the parameter, θKL, that provides the best fit:

θKL = argminθ

nr−1∑
i=0

nc−1∑
j=0

[λijqij(θ)− log(qij(θ))], qij(θ) > 0,∀i, j

There is a constraint on this minimization that all eigenvalues be positive, since that

gives us a positive definite matrix. Rue and Tjelmeland (2002) suggest proceding as though

it were an unconstrained minimization problem with a penalty if some of the eigenvalues are

negative, a technique they find works well.

Let us look closer at the fitting procedure based on KL discrepancy. Let our GMRF

be parameterized with (2m + 1)2 free parameters indexed θkl(k, l) ∈ δ00 ∪ {00}. The (k′, l′)

component of the gradient of KL(f, g), evaluated at the optimal fit, is then

nr−1∑
i=0

nc−1∑
j=0

(λij −
1

qij(θKL)
)
∂

∂θk′l′
qij(θKL) = 0 (6.2.1)

where

∂

∂θk′l′
qij(θKL) = exp(−2πι(k′i/nr + l′j/nc))

(6.2.1) is the inverse discrete Fourier transform of {λij} and {1/qijθKL} at (k′, l′). Then

γ(k′, l′) = γKL(k′, l′), (k′, l′) ∈ δ00 ∪ {00}
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since {1/qijθKL} are the eigenvalues of the inverse precision matrix Q−1. Essentially, all

covariances within δ00 ∪ {00} are fitted exactly, while those outside are determined by the

inversion of the fitted precision matrix. This is also true for other maximum-likelihood

estimators of the precision matrix (Dempster, 1972). This is important to note because this

means that GMRFs could provide very bad fits for lags outside of the neighbourhoods

specified. Getting the neighbourhoods right is thus important in using GMRFs to

approximate GGMs with the KL discrepancy as a distance measure.

This difficulty motivates Rue and Tjelmeland’s definition of another possible distance

function, their matched-correlation function, previously defined as

MCω(Q) ≡ ||ρ− ρ′||2ω ≡
nr∑
i=1

nc∑
j=1

(ρij − ρ′ij)2ωij

where Q is the precision matrix, ωij are non-negative weights assigned by the user, and ρ

and ρ′ are correlation functions. The idea is, in contrast to the KL discrepancy, to take lags

outside of the neighbourhood into account.

The correlation function ρ′ of the GMRF can then be calculated from the covariance

function γ′ which is the inverse discrete two-dimensional Fourier transform of {1/qij(θ)}

γ′(k, l) =
1

nrnc

nr−1∑
i=0

nc−1∑
j=0

1

qij(θ)
exp(2πι(ki/nr + lj/nc))

This allows their distance measure to be calculated using O(nrnclog(nrnc)) flops. The

distance measure is minimized with respect to θ for fixed θ00 = 1 and then the solution is

scaled to fit the variance, since the variance of a GMRF can always be fit exactly by scaling

its precision matrix. The minimization itself is done in the same manner as for the KL

discrepancy, again adding a penalty to a prospective θ if it has any non-positive eigenvalues.

Rue and Tjelmeland’s distance measure includes the KL discrepancy as a special case where

ω is chosen to be positive for (k, l) ∈ δ00 and zero otherwise.
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Finally, regarding Cressie and Verzelen’s proposed distance measure

CMLS(Q) ≡

(
n∑
i=1

1

V ar(Xi|x−1)

)−1

E

(
n∑
i=1

1

V ar(Xi|x−i)
(Xi − EQ(Xi|x−i))2

)
,

given that V ar(Xi|x−1) = (Q[i, i])−1 one could re-write their criterion as

CMLS(Q) ≡
tr(D−1

Q QΣ′Q)

tr(Q)

where D−1
Q is the diagonal matrix whose diagonal is the same as that of Q. Σ′ and Q (the

covariance matrix of the GGM and the precision matrix of the GMRF, respectively) are both

defined on the same torus and are Toeplitz circulant matrices that are diagonalizable using

the same basis. The criterion could then just as well be written

CMLS(Q) = nrnc

nr−1∑
i=0

nc−1∑
j=0

qij(Q)2λij

where λij are the eigenvalues of Σ′ and are given by

λij =
nr−1∑
i=0

nc−1∑
j=0

Σ[00, kl]exp(−2πι(ki/nr + lj/nc))

and qij are the eigenvalues of Q and are given by

qij =
nr−1∑
i=0

nc−1∑
j=0

Q[00, kl]exp(−2πι(ki/nr + lj/nc))

Since the criterion has again been reduced to finding these eigenvalues, one can again use

the fast Fourier transform algorithm of Rue and Tjelmeland (2002) as before to evaluate

CMLS(Q) with O(nrnclog(nrnc)) flops.

The advantages of using the CMLS criterion over the KL or MC criteria come when one

has an irregular lattice or wants to predict missing values such as in kriging. This can be
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explained by considering the evaluation function

η(Q) = E(E(X0|x−0)− EQ(X0|x−0))2/var(X0|x−0)

where “0” represents the location (0,0), EQ(Xi|x−i) =
∑

j 6=i−Q[i, j](Q[i, i])−1xj (from

the CAR literature (Besag, 1974)) and E(·) and var(·) are moments under the particular

Gaussian field being fit. This evaluation function provides a measure of how well a GMRF

predicts the value at a node from its neighbours. Cressie and Verzelen note this is in fact

what we want to do if we want to approximate a Gaussian field in a Gibbs sampler, and that

kriging also uses the conditional expectation in making its predictions. It is because the

CMLS criterion is so closely related to the evaluation function that it obviously performs

well under it relative to the KL or MC criterion when predicting missing values.

6.3 Estimations of Different GGMs

Again, since all the distance measures have been evaluated using roughly the same

algorithm, they all take a similar amount of time.

As for the closeness of the fit on different kinds of GGMs, Rue and Tjelmeland (2002) had

great success in fitting the exponential and Matérn correlation functions for neighbourhood

structures larger than 3 x 3, with maximal absolute differences in values of frequently less

than 1% using the MC criterion (they do not report similar results for the other criteria).

Gaussian and spherical functions were more difficult to fit but provided reasonably accurate

fits once the neighbourhoods were larger than 5 x 5 (with maximal absolute differences below

about 5%). While the accuracy of the fits increased as the neighbourhoods increased, the

computational costs rose in tandem as the neighbourhoods grew. Song, Fuentes and Ghosh

(2008) report this as well and also find that their fits become better as the range increases

and the conditional variance decreases. While each type of distance measure has been shown
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to work better than the others for some kinds of problems, in practice their minimizations

tend to yield similar results (Song, Fuentes and Ghosh, 2008).

It is easy to imagine that in the future more distance measures could be proposed that

would also perform slightly better under special circumstances. However, for improvements

in time costs, a new algorithm to compute these distances would have to be found. It is also

not clear that the focus of the literature has been particularly useful, since to take advantage

of GMRFs’ computational efficiency one should want to apply them to the data directly and

not to GGMs that were themselves fit to the data. It is true that if one had a set of known

correspondences between certain GGMs and GMRFs one could find the best-fitting GMRF

satisfying certain conditions and then read off the corresponding GGM, but the literature

has mostly steered clear of looking for systematic relationships between GGMs and GMRFs.

The main work that attempts to examine the relationships between different covariance

functions and GMRFs in a systematic way is Hrafnkelsson and Cressie (2003), who restrict

their attention to the Matérn class of covariance functions because of its popularity as well

as the interpretability of its parameters.

Recall that the Matérn class of covariance functions is specified by two parameters - a

scale parameter (a > 0) that controls the range of correlation and a smoothness parameter

(ν > 0) that controls the smoothness of the random field. For stationary and isotropic

processes, which are the only kinds considered, their correlation functions are of the form:

ρ(h) =
1

2ν−1Γ(ν)

(
2h
√
ν

a

)ν
Kν

(
2h
√
ν

a

)
;h ≥ 0

where h is lag distance and Kν is the modified Bessel function of order ν (Hrafnkelsson and

Cressie, 2003). If S is a vector of random variables at various locations and

E(S(xi)|{s(xj) : j 6= i}) = µi + φ

n∑
j=1

cij{s(xj)− µj},

var(S(xi)|{s(xj) : j 6= i}) = τ 2
i ,
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and S(xi)|{s(xj) : j 6= i} is Gaussian, then the joint distribution of S is N(µ, (I − φC)−1T )

where C is a n×n matrix whose (i, j)th element is cij and T is an n×n matrix with τ 2
1 − τ 2

n

on the diagonal. To specify a GMRF we would need to estimate the spatial dependence

parameter φ; we would also need to decide when the spatial dependence has decreased to

0, a point which Hrafnkelsson and Cressie (2003) call rmax. Then C depends on rmax.

Hrafnkelsson and Cressie investigate a particular class of C’s only and, holding everything

else fixed, vary rmax and φ. For each pair (rmax, φ) they estimate the Matérn covariance

parameters a and ν with non-linear least squares, minimizing:

1.
∑

i

∑
j[log[aij] − log{h1(rmax,i, φj)}]2 where a is our first parameter (the range

parameter) and h1(·) is a potential parameterized function (taking the logs so that

the model fits for both small and large a).

2.
∑

i

∑
j{νij − h2(rmax,i, φj)}2 where ν is our second parameter (the smoothness

parameter) and h2(·) is a potential parameterized function.

In particular, they specify the following functional forms for h1(·) and h2(·):

h1(rmax, φ) = exp

(
γie

λ1(rmax−1) φβ1
(1− φ)α1

)
− 1

h2(rmax, φ) =
η2

(φ+ γ2(rmax)λ2)β2

where α1 > 0, β1 > 0, γ1 > 0, λ1 > 0, β2 > 0, η2 > 0, γ2 > 0 and λ2 > 0 are estimated

parameters. These functional forms are not justified beyond noting that they seem to fit a

surface plot between (a, ν) and rmax and φ relatively well.

While this approach is a little ad hoc, their estimated parameters do seem to fit previous

studies. Griffith and Csillag (1993) and Griffith, Layne, and Doyle (1996), in particular,

found that certain GMRFs closely approximated certain Matérn GGMs, and Hrafnkelsson

and Cressie’s estimates do obtain similar results (2003).
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Chapter 7

The Approximation of GGMs Using

GMRFs: A SPDE and INLAs

7.1 A Different Approach: Approximations Using a

SPDE

The latest development in using GMRFs to approximate GGMs comes at the problem

from an entirely different angle. Rather than mechanically finding parameterizations that

map GMRFs to GGMs as Hrafnkelsson and Cressie did for the Matérn class of GGMs (2003),

Lindgren, Lindström and Rue find that an approximate solution to a particular stochastic

partial differential equation (SPDE) can explicitly link GMRFs and GGMs for a restricted

class of GGMs (a subset of the Matérn class) (2010).

It has long been known that the solution x(u) of the linear fractional stochastic partial

differential equation

(κ2 −∆)α/2x(u) = W (u), u ∈ Rd, α = ν +
d

2
, κ > 0, ν > 0
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(where W is spatial Gaussian white noise with unit variance, ∆ =
∑d

i=0
δ2

δx2
i
, and κ is

the scaling parameter from the Matérn covariance function between locations u and v,

σ2

Γ(ν)2ν−1 (κ||v − u||)νKν(κ||v − u||) where σ2 is the marginal variance Γ(ν)

Γ(ν+ d
2

)(4π)
d
2 κ2ν

) is a

Gaussian field with Matérn covariance function (Whittle, 1954, 1963).

I will state Lindgren, Lindström and Rue’s main results without proof. Proofs can be

found in the long appendices of their 2010 paper. To first give a quick overview, their main

result is that the linear fractional SPDE given earlier can be represented as a GMRF on

a regular or irregular 2D lattice. Their explicit mapping between a GGM and its GMRF

representation costs only O(n), involving no computing.

In particular, they use the stochastic weak solution of the SPDE which requires that

{〈φj, (κ2 −∆)α/2x〉, j = 1, ..., n} =d {〈φj, ε〉, j = 1, ..., n} for every finite set of test functions

{φj(u), j = 1, ..., n}. The finite element representation of the solution to the SPDE is

x(u) =
∑n

k=1 ψk(u)wk for some basis functions ψk and Gaussian weights wk (Kleoden and

Platen, 1999; Kotelenez, 2007).

If C,G and K are n × n matrices such that Cij = 〈ψi, ψj〉, Gij =

〈∇ψi,∇ψj〉, and Kij(κ
2) = κ2Cij +Gij then their approximations for Qα(κ2) are as follows:

Q1(κ2) = K(κ2)

Q2(κ2) = K(κ2)C−1K(κ2)

and for α = 3, 4, ...

Qα(κ2) = K(κ2)C−1Qα−2C
−1K(κ2)

These expressions make the approximations immediate; Lindgren, Lindström and Rue also

provide analytic formulas for C and G in an appendix.

Their results only hold for certain values of the smoothness parameter ν in the Matérn

covariance function, however: ν = 1
2
, 3

2
, 5

2
, ..., in R1 and ν = 0, 1, 2, ..., in R2. α must
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also be a strictly positive integer. Further, it should be emphasized that their method of

representing certain GGMs using GMRFs is only an approximation. That being said, it

is fast: Lindgren, Lindström and Rue tested it on Kneib and Fahrmeir’s dataset (2007),

which Kneib and Fahrmeir had not been able to model using a dense covariance matrix,

and found it took seconds to complete a Bayesian analysis of it (2010). This dataset had a

5258× 5258 precision matrix.

7.2 Integrated Nested Laplace Approximations

This leads to the other recent innovation; Rue, Martino and Chopin’s championing

of using integrated nested Laplace approximations (INLAs) rather than MCMC methods

(2009). It is INLAs that Lindgren, Lindström and Rue use on Kneib and Fahrmeir’s

dataset. While this is a different kind of innovation, it has important ramifications for

GMRF estimation and should be discussed.

For what follows, let x be the vector of all the latent Gaussian variables, θ the vector of

hyperparameters, y observational variables, and π(·|·) a conditional density. The idea behind

INLAs is that, being interested in the posterior marginals

π(xi|y) =

∫
π(xi|θ, y)π(θ|y)dθ

π(θj|y) =

∫
π(θ|y)dθ−j

we can approximate them in this form:

π̃(xi|y) =

∫
π̃(xi|θ, y)π̃(θ|y)dθ

π̃(θj|y) =

∫
π̃(θ|y)dθ−j
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π(xi|y) is approximated by approximating both π(θ|y) and π(xi|θ, y) and integrating out

θ through numerical integration. π(θj|y) is approximated by similarly integrating out θ−j

from the approximation of π(θ|y). I will walk through Rue, Martino and Chopin’s methods

for approximating π(θ|y) and π(xi|θ, y) in turn.

7.2.1 Approximating π̃(θ|y)

1. Optimize log{π̃(θ|y)} with respect to θ to obtain the mode of {π̃(θ|y)} (in particular,

they recommend using a quasi-Newton-Raphson method to approximate the second

derivative of log{π̃(θ|y)} by taking the difference between successive gradient vectors,

the gradient in turn being approximated by using finite differences). Call this mode

θ∗.

2. At θ∗, compute the negative Hessian matrix, H, using finite differences. Define Σ ≡

H−1. If the density were Gaussian, this would be the covariance matrix for θ. Let Σ =

V ΛV T be the eigendecomposition of Σ and define θ to be a function of a standardized

variable z: θ(z) = θ∗ + V Λ
1
2 z. If π̃(θ|y) is Gaussian then z ∼ N(0, I). The point of

this reparameterization is to make later numerical integration easier.

3. Now some points are selected to be used in the numerical integration. A space

is searched with points being added to the collection if log{π̃(θ|y)} is considered

significant, in the following sense. Starting from the mode (z = 0), one travels in the

positive direction of z1 with step length δz as long as log[π̃{θ(0)|y}]-log[π̃{θ(z)|y}] < δπ.

After travelling as far as possible in one direction along z1 and accumulating points

along this route, one switches direction and goes the opposite direction along z1 as

long as the condition holds. Then the process is repeated along z2. These points will

turn out to be on a regular grid, so that area weights ∆k will later be able to be taken

to be equal.
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4. We would like to use numerical integration on π̃(θ|y) but this is computationally

demanding since it would entail evaluating π̃(θ|y) at a large number of points. Instead,

the authors suggest computing π̃(θ|y) at only the points that were selected in the

previous step. They remark that for higher accuracy one should use more points and

select δz accordingly. Rue and Martino (2007) provide some empirical guidance as to

how the relative size of δz might affect results.

7.2.2 Approximating π̃(xi|θ, y)

To approximate π̃(xi|θ, y), Rue, Martino and Chopin suggest a few different methods. A

Gaussian approximation would be simplest; a Laplace approximation would be most accurate

but would require too many computations; their preferred method is a simplified Laplace

approximation. Here I will detail each in turn.

1. A Gaussian approximation π̃G(xi|θ, y) would be the simplest solution to implement

and also computationally the fastest. They note that π̃G(x|θ, y) was already calculated

during the approximating of π̃(θ|y), so all that would need to be additionally calculated

are the marginal variances, which could be derived by using the following recursion:

Σij =
δ2ij
Lii
− 1

Lii

∑n
k=i+1 LkiΣkj, j ≥ i, i = n, ..., 1 where Lij are from the Cholesky

decomposition of Q = LLT and δij = 1 if i = j and 0 otherwise. In fact, we only would

need to calculate Σij for the (i, j)s for wihch we did not know Lij was 0.

2. The Laplace approximation is given by:

π̃LA(xi|θ, y) ∝ π(x, θ, y)

π̃GG(x−i|xi, θ, y)

∣∣∣∣
x−i=x∗−i(xi,θ)

where π̃GG is the Gaussian approximation to x−i|xi, θ, y and x∗−i(xi, θ) is the modal

configuration. The difficulty with this approximation is that it would require π̃GG to be

computed for every value of xi and θ. One modification would be to approximate π̃GG

by approximating the modal configuration as follows: x∗−i(xi, θ) = Eπ̃G(x−i|xi). Then

60



the RHS could be evaluated using the conditional density derived from the Gaussian

approximation π̃G(xi|θ, y). A second possibility would be to instead approximate π̃LA

by

π̃LA(xi|θ, y) ∝ N{xi;µi(θ), σ2
i (θ)}exp{cubic spline(xi)}

The cubic spline is done on the difference of the log-density of π̃LA(xi|θ, y) and

π̃G(xi|θ, y) at the selected points and the density is normalized using quadrature

integration. The authors prefer to correct for location and skewness in the Gaussian

approximation (π̃G(xi|θ, y)), however, by following the method below.

3. Rue, Martino and Chopin’s preferred approximation of π̃(xi|θ, y) involves obtaining a

simplified Laplace approximation π̃SLA(xi|θ, y) by expanding π̃LA(xi|θ, y) around xi =

µi(θ). They use

π̃LA(xi|θ, y) ∝ π(x, θ, y)

π̃GG(x−i|xi, θ, y)

∣∣∣∣
x−i=x∗−i(xi,θ)

and x∗−i(xi, θ) = Eπ̃G(x−i|xi) and after some calculations obtain an estimate

log{π̃SLA(xsi |θ, y)} = constant− 1

2
(x

(s)
i )2 + γ

(1)
i (θ)x

(s)
i +

1

6
(x

(s)
i )3γ

(3)
i (θ) + ... (7.2.1)

where

γ
(1)
i (θ) =

1

2

∑
j∈Iı

σ2
j (θ){1− corrπ̃G(xi, xj)

2}d(3)
j {µi(θ), θ}σj(θ)aij(θ)

γ
(3)
i (θ) =

∑
j∈Iı

d
(3)
j {µi(θ), θ}{σj(θ)aij(θ)}3

and d
(3)
j (xi, θ) = ∂3

∂x3
j
log{π(yj|xj, θ)}

∣∣∣∣
xj=Eπ̃G (xj |xi)

, for some aij derived from
Eπ̃G−µj(θ)

σj(θ)
=

aij(θ)
xi−µi(θ)
σi(θ)

, an equation which is in turn implied by the conditional expectation

x∗−i(xi, θ) = Eπ̃G(x−i|xi).1

1(7.2.1) does not define a density since the third order term is unbounded. Rue, Martino and Chopin
deal with this by fitting a skew normal density so that the third derivative at the mode is γ(3)

i , the mean is
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To compute this approximation one needs to calculate ai· for each i; most of the other

terms do not depend on i and hence are only computed once. The cost of computing

log{π̃SLA(xsi |θ, y)} for a particular i is of the same order as the number of non-zero

elements of the Cholesky triangle, or O(n log(n)). For each value of θ, repeating this

process n times gives a total cost of O(n2 log(n)), which they “believe” is close to the

lower limit for any algorithm that approximates all n marginals. Each site must also

be visited for each i since the graph of x is general, an operation which by itself costs

O(n2). Thus, the total cost of computing all n marginals π̃(xi|y) is exponential in the

dimension of θ times O{n2 log(n)}.

7.2.3 Summary

Rue, Martino and Chopin’s method garnered much interest, as a new and fast method,

but questions remain.

In particular, since it is such a new method, there are as yet relatively few results using

it and it is not clear how accurate the approximations would be with different datasets. The

asymptotics of the approximation error have not been fully explored, although Rue, Martino

and Chopin claim that it produces “practically exact” results and that non-negligible bias

occurs only in “pathological” cases (2009). The other main problem with their technique

is simply in ease of use; many commenters seem to fear that the method would only be

useful when used with a packaged “black box” program since it would take a lot of time to

implement for the first time (the authors do have R code available for a limited selection

of applications). Further, while the method has very low computational costs in many

situations, it is not a cure-all; in particular, its computational cost is exponential in the

number of hyperparameters and thus it may not be appropriate for situations in which the

number of hyperparameters is large.

γ
(1)
i , and the variance is 1. They defend this choice in an appendix. There are also special cases for which

they fit a spline-corrected Gaussian instead of a skewed normal distribution, but this is peripheral.
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All that being said, whereas the traditional literature which focused more on defining new

distance measures seemed to be stagnating in its reliance on the same general algorithm,

these recent innovations are substantially different from what came before and have great

promise to spur new work. Many of the current difficulties remaining may resolve themselves

in time.
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Chapter 8

Conclusion

There are clearly many ways of modelling spatial correlation. This thesis discussed some

of the main methods used, focusing on Gaussian Markov Random Fields.

We saw that GMRFs can be motivated as being useful when we have observations that

are far enough apart that we can call them conditionally independent given the intermediary

observations. Our data should also be at an appropriate scale to capture the interactions

between nodes that are modelled, and sites should neighbour each other as much as possible,

with few borders with the outside world. We noted that much data modelled with GMRFs

is actually not entirely appropriately modelled by GMRFs. For example, satellite data that

appears as a lattice may hide some interactions between plots due to the aggregation of

finer-grained data into a single value for each plot. While relationships between the plots

could still be estimated, they might not be capturing the true underlying relationships.

We also discussed the benefits and drawbacks of CARs and SARs. Noting the importance

of intrinsic GMRFs in specifying priors, we then discussed in detail how we might specify the

precision matrices for a few important classes of models. We explored how and why GMRFs

can be made to be so computationally efficient. Finally, we surveyed the literature on using

GMRFs as computationally efficient proxies for GGMs. Much of this literature focused on

minimizing a distance measure between a particular GMRF and GGM; we also discussed an
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attempt to empirically estimate a more systematic relationship between the two. Finally,

we turned to the most recent literature, which finds that a small subset of GGMs can be

explicitly linked to GMRFs through a SPDE, though this is only through an approximation,

and which pioneers a new method for fitting models, also based on approximations which

have as yet little explored errors.

In summary, we have repeatedly seen that GMRFs are only truly appropriate in a very

limited number of cases. However, for those cases for which GMRFs are appropriate,

they are extremely computationally efficient. Also, GMRFs show promise in being able

to approximate GGMs, but there is still much room for improvement.
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